

SuDS and Drainage Report

Land Adj Old Mill House, Cowfold Road, Bolney RH17 5SE

Rev: **P**

Ref: **C3938**

CGS Civils Ltd
Richard Cobden House
Lion Street
Chichester
West Sussex
PO19 1LW
mail@cgscivils.co.uk
www.cgscivils.co.uk

Document Control

Project Number	C3938		
Date	18 th December 2025	Revision	P
Author	Luke Honeywill	Signature	

Revision History

Date	Revision	Author	Approved
18/12/2025	P	LH	CS

Contents

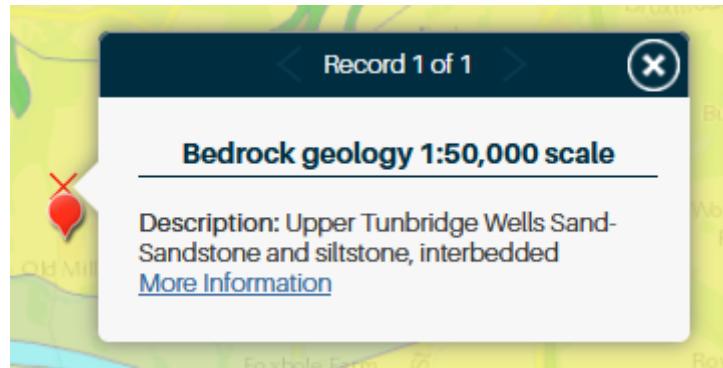
1	INTRODUCTION	4
2	EXECUTIVE SUMMARY:	5
3	SITE GEOLOGY	6
4	EXISTING DRAINAGE	7
5	PROPOSED DRAINAGE STRATEGY	7
6	SUMMARY AND CONCLUSIONS	8
7	APPENDICES	9

1 Introduction

- 1.1.1 CGS Civils Ltd has been appointed to undertake a drainage strategy report for a proposed development at Land adj to Old Mill House, Cowfold Road in Bolney, West Sussex.
- 1.1.2 The proposed development will consist of the demolition of existing stables and outbuilding followed by the construction of a single dwelling. The proposed development is located as OS Grid Reference TQ 25045 23379 and has the post code RH17 5SE.
- 1.1.3 The purpose of this drainage scheme is to demonstrate how the proposed development can be satisfactorily drained without increasing flood risk onsite and where appropriate, providing betterment over the existing site to reduce flood risk in the region.

Fig 1. Site Location

2 Executive Summary:


- 2.1.1 An infiltration test to BRE365 was carried out on site by CGS Civils Ltd in December 2025. The test yielded a worst case infiltration rate of 5.1×10^{-6} m/s, which is deemed suitable for discharge of surface water via infiltration.
- 2.1.2 It is therefore proposed that all runoff is discharged to ground via infiltration, with the roof area runoff discharging to ground via the use of a new raingarden within the site which will not only cater for the 1 in 100-year +45% storm period +10% urban creep but will also promote biodiversity and sustainability.
- 2.1.3 The hard paved areas are to be constructed from a permeable surface to allow runoff to discharge freely to ground via infiltration.
- 2.1.4 The Foul water will discharge into a cesspool on site. It is proposed that a CCTV drainage survey is conducted on the network serving the existing Old Mill House to confirm if a connection into the existing network is viable.

3 Site Geology

3.1 British Geological Survey information

3.1.1 The British Geological Survey confirms the bedrock geology to be made up of Upper Tunbridge Wells Sand, which is comprised of Sandstone and Siltstone. At the time of writing the British Geological Survey website does not have any recorded information of the Superficial deposits on site.

Fig 2. British Geological Survey

3.2 Geological Assessment

3.2.1 In December 2025, CGS Civils Ltd conducted an infiltration test to BRE365 on site which yielded a worst-case infiltration rate of 5.1×10^{-6} m/s which is deemed suitable for infiltration.

3.2.2 During testing, the underlying geology was noted to be comprised of clay with some sand present within the clay layer.

Fig 3. Inf test photographs

4 Existing Drainage

4.1.1 It is not currently known how the existing site discharges surface and foul water runoff, however, the topographical survey picked up a single chamber within the site which is to be investigated to confirm what it serves and if a network can be re-used.

5 Proposed Drainage Strategy

5.1 SuDS Hierarchy

5.1.1 All options for the destination of run-off generated on site have been assessed in line with the SuDS hierarchy as set out in Building Regulations Part H document and DEFRA's Draft National Standards for SuDS.

Table 1. SuDS Hierarchy

Discharge Destination	
Rainwater Harvesting	Yes rainwater harvesting is proposed
Discharge to Ground	Yes – discharge to ground at recorded infiltration rate of 5.1×10^{-6} m/s. Site to utilise a shallow raingarden as an infiltration feature.
Discharge to Watercourse	N/A
Discharge to Surface Water Sewer	N/A
Discharge to Other Sewer	N/A

5.2 Proposed Hydraulic Calculation Specifications:

Table 2. SuDS Hierarchy

Hydraulic Calculations Settings:	
Rainfall Methodology	FEH-22
Volumetric Run-off Coefficient Cv	1
CV Winter and Summer	1
Additional Storage (m ³ / ha)	0.0
Maximum Rainfall (mm/hr)	75
Raingarden Design	Base Coefficient (m/hr): 0.01836 Side Coefficient (m/hr): 0.00000 Factor of Safety: 2 Porosity: 100% Time to Half Empty (mins): 966

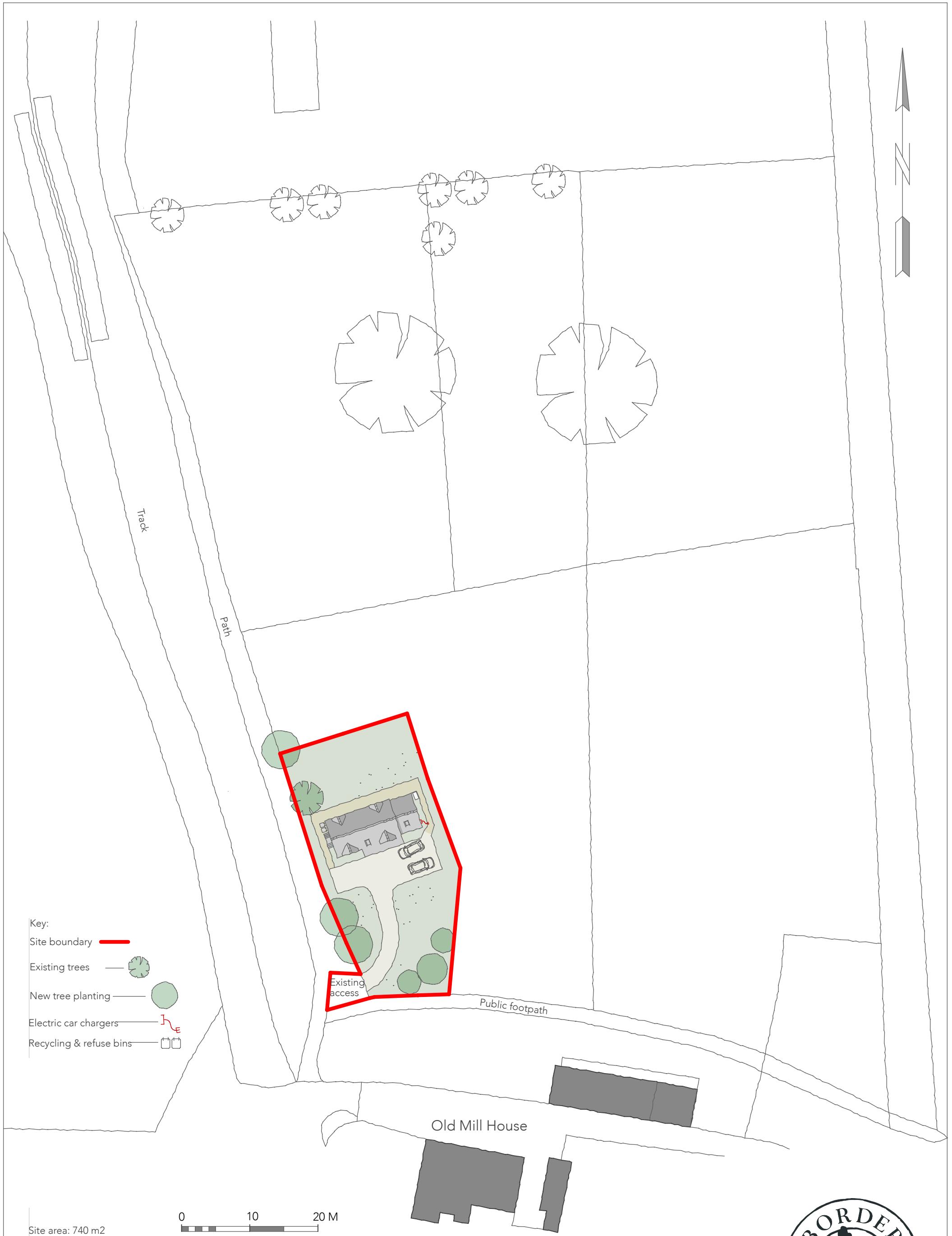
5.3 Surface Water Drainage

5.3.1 Based upon the results of the onsite soakage testing to BRE365, which yielded an infiltration rate of 5.1×10^{-6} m/s, it is proposed that the site will discharge all surface water to ground via infiltration. All runoff from roof areas are to be captured into a positive drainage network prior to discharging into a rain garden which will allow the runoff to infiltrate to ground whilst also promoting biodiversity and sustainability.

5.3.2 The hard paved access road is to be constructed from a permeable surface to allow all runoff to discharge freely to ground via infiltration.

5.3.3 All SuDS features have been designed to the recorded infiltration rate and to cater for the 1 in 100-year +45% storm +10% for urban creep.

5.4 Foul water drainage


- 5.4.1 Due to the lack of foul water infrastructure near the site and lack of any other discharge option, it is proposed that the foul water is to be discharged into a cesspool on site.
- 5.4.2 It is proposed that a CCTV drainage survey is to be conducted on the network serving the existing Old Mill House to confirm if a connection into the existing network is viable and if any remedial works are required.

6 Summary and Conclusions

- 6.1.1 CGS Civils has been instructed to produce a Drainage statement under National Planning Policy Framework (NPPF) to support the Planning Application for the demolition of existing outbuildings and stables followed by the construction of a single dwelling.
- 6.1.2 The Surface Water will discharge to ground via infiltration. On-site infiltration test recorded rate of $5.1 \times 10^{-6} \text{ m/s}$ which is deemed viable. Roof area runoff will discharge to ground via a raingarden, and the hard paved areas are to be constructed from permeable surface. All SuDS features have been designed to cater for the 1 in 100-year +45% storm and 10% urban creep.
- 6.1.3 The Foul water will discharge into a cesspool on site. It is proposed that a CCTV drainage survey is conducted on the network serving the existing Old Mill House to confirm if a connection into the existing network is viable.
- 6.1.4 The report has demonstrated that the proposed drainage measures ensure that suitable means of surface water and foul drainage can be achieved for the proposed development.

7 Appendices

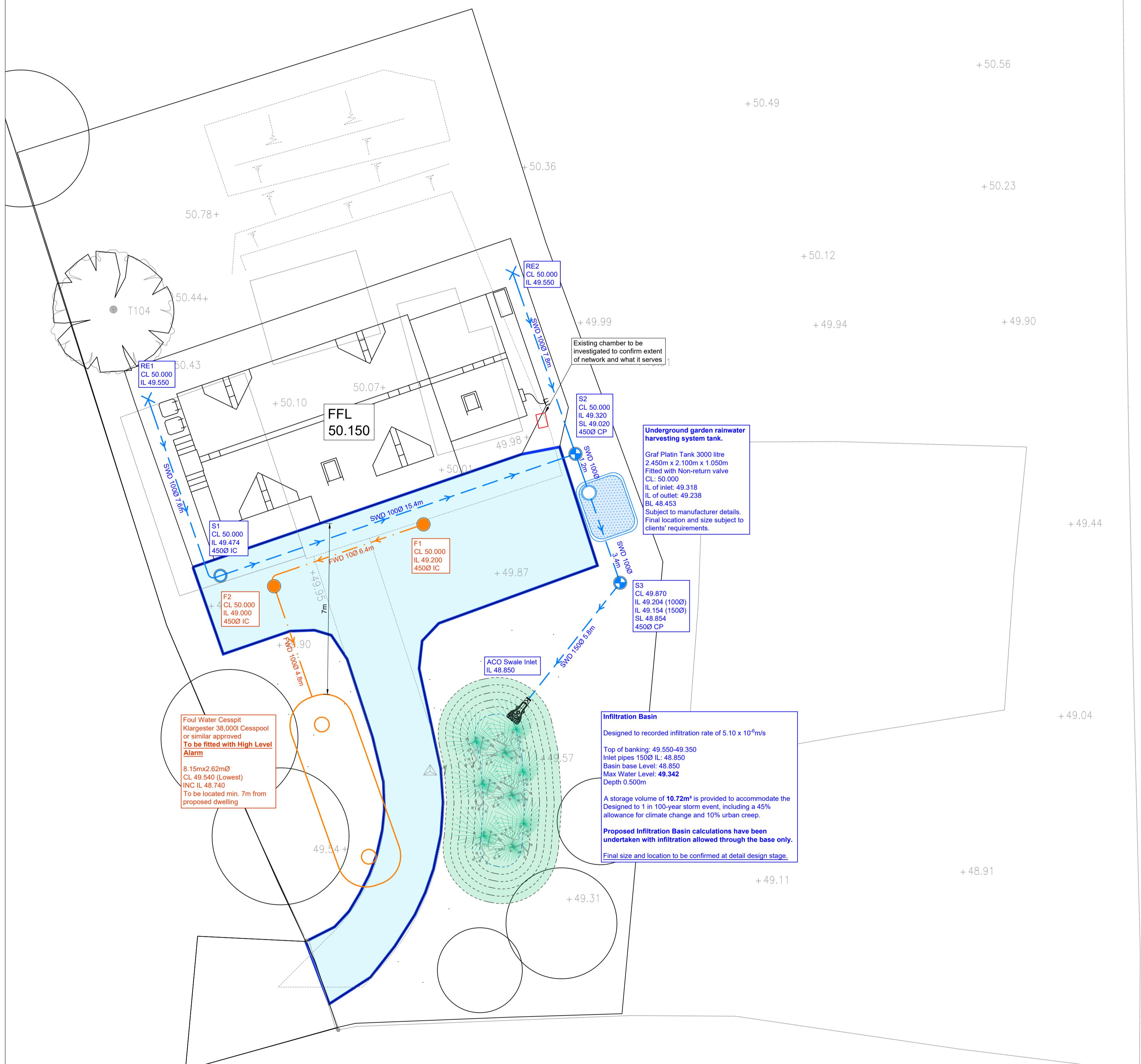
7.1 Appendix A – Site Plan

SITE PLAN

1:500 ON A3 . September 2025

Revision A: 27.10.25 Curtilage & house amended

M6169.2A



7.2 Appendix B – Drainage Layout

+51.17

+51.33

DESIGN SUBJECT TO THE APPROVAL OF:
PLANNING AUTHORITY
BUILDING CONTROL
WATER AUTHORITY

DESIGN SUBJECT TO THE CONFIRMATION OF:
EXTERNAL LEVELS DESIGN
GROUNDWATER DEPTH
ROOT PROTECTION AREAS

DRAINAGE LEGEND

EXISTING FEATURES

	Existing foul/surface water manhole to be abandoned
	Foul Drainage
	Surface Water Drainage</td

7.3 Appendix C – Surface Water Calculations

Design Settings

Rainfall Methodology	FEH-22	Minimum Velocity (m/s)	1.00
Return Period (years)	2	Connection Type	Level Soffits
Additional Flow (%)	0	Minimum Backdrop Height (m)	0.200
CV	1.000	Preferred Cover Depth (m)	0.350
Time of Entry (mins)	5.00	Include Intermediate Ground	✓
Maximum Time of Concentration (mins)	30.00	Enforce best practice design rules	✓
Maximum Rainfall (mm/hr)	75.0		

Nodes

Name	Area (ha)	T of E (mins)	Cover Level (m)	Node Type	Manhole Type	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
S3	0.008	5.00	49.870	Manhole	Adoptable	500	1007.790	1007.736	0.716
INF BASIN	0.000		49.350	Manhole	Adoptable	150	1002.975	1001.629	0.500

Links (Input)

Name	US Node	DS Node	Length (m)	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)
1.000	S3	INF BASIN	7.777	49.154	48.850	0.304	25.6	150

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	MH Type	Connections	Link	IL (m)	Dia (mm)	Link Type
S3	1007.790	1007.736	49.870	0.716	500	Adoptable		0	1.000	49.154	150
INF BASIN	1002.975	1001.629	49.350	0.500	150	Adoptable		1	1.000	48.850	150

Simulation Settings

Rainfall Methodology	FEH-22	Analysis Speed	Normal	Starting Level (m)
Rainfall Events	Singular	Skip Steady State	x	Check Discharge Rate(s)
Summer CV	1.000	Drain Down Time (mins)	240	Check Discharge Volume
Winter CV	1.000	Additional Storage (m³/ha)	0.0	x

Storm Durations

15	30	60	120	180	240	360	480	600	720	960	1440
----	----	----	-----	-----	-----	-----	-----	-----	-----	-----	------

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
100	45	10	0

Node INF BASIN Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.01836	Safety Factor	2.0	Invert Level (m)	48.850
Side Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Time to half empty (mins)	966

Depth (m)	Area (m ²)	Inf Area (m ²)	Depth (m)	Area (m ²)	Inf Area (m ²)
0.000	10.0	10.0	0.500	33.9	35.2

Results for 100 year +45% CC +10% A Critical Storm Duration. Lowest mass balance: 98.86%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
1440 minute winter	S3	1380	49.342	0.188	0.4	0.0369	0.0000	SURCHARGED
1440 minute winter	INF BASIN	1380	49.342	0.492	0.4	10.7199	0.0000	OK
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	
1440 minute winter	S3	1.000	INF BASIN	0.4	0.347	0.011	0.1369	
1440 minute winter	INF BASIN	Infiltration			0.0			

7.4 Appendix D – Soakage Test Results

Job: Old Mill House, Bolney - Test 1

Infiltration Calculator

$$f = \frac{Vp75-25}{ap50 \times tp75-25}$$

$Vp\ 75-25$ = Effective storage volume between 75% and 25% effective depth

$ap50$ = Internal surface area of the trial pit up to 50% effective depth and including the base area

$tp75-25$ = The time for the water level to fall from 75% to 25% effective depth

f = Infiltration rate

Trial pit width	=	0.3
Trial pit depth	=	0.9
Trial pit length	=	1

$ap50$ = 1.47 m/squared

$tp75-25$ = 12000 seconds

$Vp\ 75-25$ = 0.135 m/cubed

F = 7.65E-06

Job: Old Mill House, Bolney - Test 2

Infiltration Calculator

$$f = \frac{Vp75-25}{ap50 \times tp75-25}$$

$Vp 75-25$ = Effective storage volume between 75% and 25% effective depth

$ap50$ = Internal surface area of the trial pit up to 50% effective depth and including the base area

$tp75-25$ = The time for the water level to fall from 75% to 25% effective depth

f = Infiltration rate

Trial pit width	=	0.3
Trial pit depth	=	0.9
Trial pit length	=	1

$ap50$ = 1.47 m/squared

$tp75-25$ = 15500 seconds

$Vp 75-25$ = 0.135 m/cubed

F = 5.92E-06

Job: Old Mill House, Bolney - Test 3

Infiltration Calculator

$$f = \frac{Vp75-25}{ap50 \times tp75-25}$$

$Vp 75-25$ = Effective storage volume between 75% and 25% effective depth

$ap50$ = Internal surface area of the trial pit up to 50% effective depth and including the base area

$tp75-25$ = The time for the water level to fall from 75% to 25% effective depth

f = Infiltration rate

Trial pit width	=	0.3
Trial pit depth	=	0.9
Trial pit length	=	1

$ap50$ = 1.47 m/squared

$tp75-25$ = 18000 seconds

$Vp 75-25$ = 0.135 m/cubed

F = 5.1E-06