

SuDS Drainage Statement

Barn Cottage, Cuckfield Road, Ansty, RH17 5AG

Client

Places Architecture

Ref: 13829

Date: July 2025

Consulting Engineers

GTA Civils & Transport Ltd

Maple House

192 – 198 London Road

Burgess Hill

West Sussex, RH15 9RD

Tel: 01444 871444

Index

1	Introduction	2
	Existing Site	3
2	Proposed SuDS Strategy and Foul Drainage	4

Schedule of Appendices

- A Site Location Maps & Aerial Photo
- B Topographic Survey & Sewer Records
- C Excerpts from Site Investigation
- D Proposed Drainage Strategy Layout
- E Drainage Calculation Sheets
- F SuDS Maintenance Plan

Issue	Issue date	Compiled	Checked
First Issue	04.07.2025	FVV	MR

1 Introduction

- 1.1 GTA Civils Ltd. was appointed by the Client to prepare a SuDS Drainage Statement in relation to the proposed development at Barn Cottage, Cuckfield Road, Ansty, RH17 5AG. No responsibility is accepted to any third party for all or part of this study in connection with this or any other development.
- 1.2 The objective of this Statement is to support a planning application to Mid Sussex District Council and demonstrate that the foul and surface water drainage networks comply with the current national and local drainage policies.

2 Existing Site

2.1 The application site falls within the area administered by Mid Sussex District Council (MSDC). The site, accessed from Cuckfield Road, is currently vacant with the exception of a small outbuilding. Site location maps and an aerial view are shown in Appendix A.

2.2 Hydrology: there is no watercourses within the site or in the immediate vicinity. The existing runoff from the outbuilding discharge unrestricted to ground. Ansty sits on a high point, with land falling both north and south towards two ordinary watercourse, approximately 350m north and 450m south of the site. These ultimately drain to the River Adur, to the west.

2.3 Topography: a topographic survey is included in Appendix B. The site slopes gently from west to east, with levels ranging from approximately 79.30m Above Ordnance Datum (AOD) to 77m AOD where it meets Cuckfield Road (B2036). There is an existing raised bund in the western corner of the site with a top level of 80.20m AOD.

2.4 Geology: The BGS's online geology map shows the area is underlain by Upper Tunbridge Wells Sand (sandstone and siltstone) with no recorded superficial deposits.

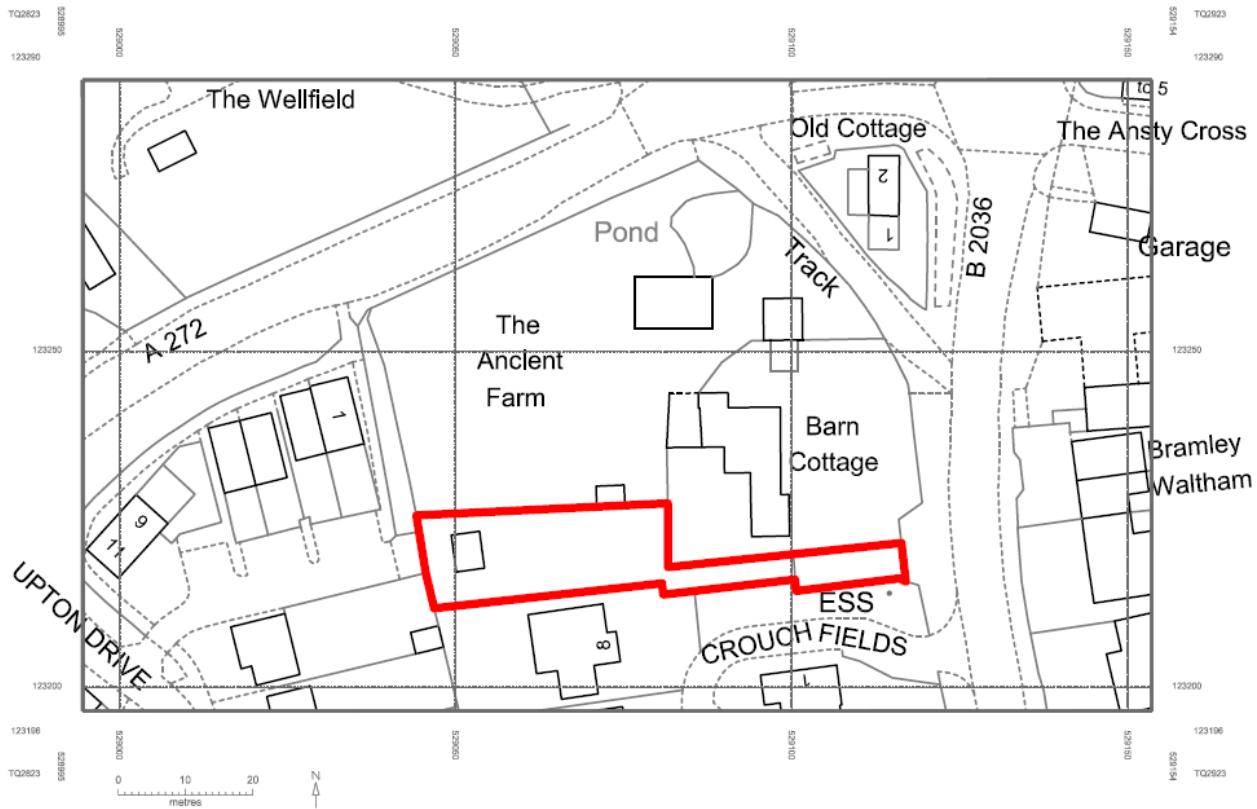
2.5 Soakage testing was carried out at the site location in June 2025 within a trial pit located central to the site. The investigation found a 200mm layer of topsoil directly over Upper Tunbridge Wells sand (slightly gravelly silty clay). A marginal infiltration rate of 9.45×10^{-7} m/s was calculated.

2.6 Public sewers: Southern Water's records (see Appendix B) show a 150mm diameter foul sewer flowing north-south on the west side of Cuckfield Road, with two manholes (1201 and 1202) located directly at the site entrance.

2.7 The greenfield runoff rates for the contributing area of 0.026ha were calculated using the UK SuDS Tool, IH124 method. The rates for the 4 main storm return periods are as follows:

Event	Greenfield Rates (l/s)
QBAR	0.15
1 in 1 yr	0.13
1 in 30 yrs	0.34
1 in 100 yrs	0.48

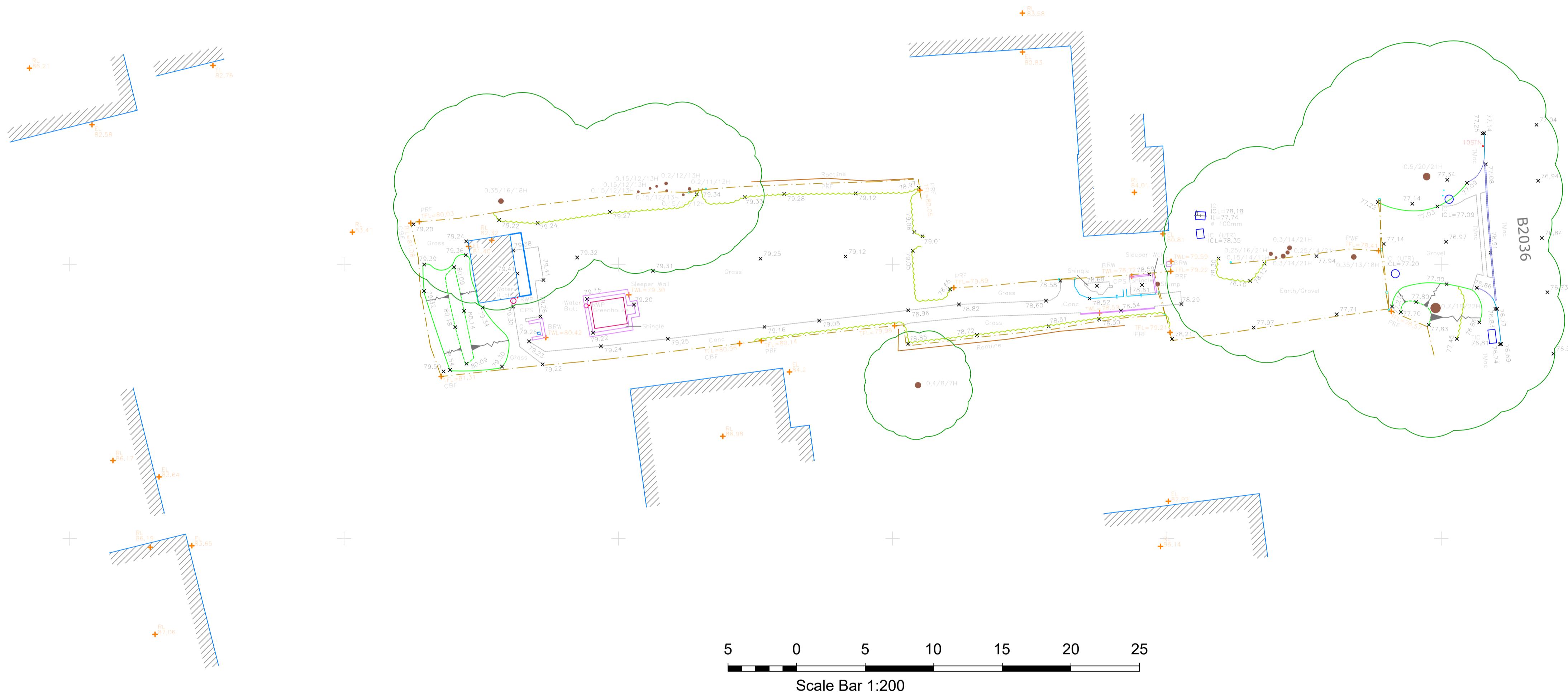
3 Proposed SuDS Strategy and Foul Drainage


- 3.1 A drainage strategy layout has been developed for the proposed new dwelling, based on applying the SuDS Hierarchy (infiltration, watercourses, public sewers).
- 3.2 As discussed in Section 1, the site investigation indicates that infiltration is marginal, despite the sandy geology. It is assumed on that basis that nearby houses likely outfall to the existing Southern Water sewer on Cuckfield Road (effectively acting as a combined sewer).
- 3.3 In order to maximise the infiltration potential on this site, a large infiltration blanket is proposed beneath the proposed driveway. This will drain both the roof runoff ($80m^2 + 10\% \text{ urban creep} = 88m^2$) and the driveway runoff ($172m^2$).
- 3.4 The blanket shall have a minimum depth of 700mm with concrete baffles to achieve a flat formation. This is shown on the drainage layout in Appendix D. Calculations are included in Appendix E, using FEH22 rainfall data, which demonstrate that the infiltration blanket can contain all storm events up to and including the 1 in 100+45% climate change event.
- 3.5 A high-level overflow has also been shown, with a controlled outfall via a 20mm orifice to the combined sewer. This has been provided as the drainage blanket does not meet the criterion of half draining within 24 hours under the design storm conditions (1 in 100yr +45% climate change). The controlled overflow will ensure that the flow rates to the existing sewer is contained in repeated storm conditions. The drainage calculations also show that in the 1 in 30yr storm + 40% climate change, the critical water level in the subbase is 76.876 (426mm depth), which means 39% of the subbase is still available for subsequent storms.
- 3.6 Any exceedance flow which bypasses the driveway would drain overland towards Cuckfield Road, as per the existing situation, with no increase in flood risks downstream. The use of infiltration also means that the proposal meets the interception requirements of the current National Standards for SuDS published by DEFRA.
- 3.7 Water quality: the proposed permeable driveway will provide pollutant controls for the driveway runoff; with the pollution hazard of the residential roof expected to be very low. This is in line with the Simple Index approach as described in the SuDS manual.
- 3.8 It is proposed to route the new unit's foul effluent to the public sewer, via a new connection to the existing manhole at the site entrance. This will be subject to a S106 application in due course with Southern Water.

3.9 Maintenance: the drainage system will be owned and maintained by the landowner. A planning stage drainage maintenance schedule is included in Appendix F.

- End of Report -

Appendix A


Site Location Maps & Aerial Photo

Appendix B

Topographic Survey & Sewer Records

GRID:
The survey is to Ordnance Survey National Grid, computed using a RTK Network.

DATUM:
The heights are Orthometric Heights Related To OSGM15.

Surveyed boundaries may not be legal boundaries.
Dimensions should not be scaled. All information contained in the drawing should be checked and verified on site prior to any excavation/construction.
Utilities have been identified to the best of the surveyors knowledge but cannot be guaranteed. Due to non entry of inspection chambers all pipe sizes should be checked and verified before any works commence.
Features such as Inspection Chambers and Water Meters etc may be obscured by parked cars or debris.

Key

LEVELS & DEPTHS		INSPECTION CHAMBERS		
nture	A Approximate	AC	Access Cover	
ea Beacon	BD Back Drop Depth	BH	Borehole	
ment Light	BDL Back Drop Level	CDC	Concrete Drainage Channel	
Bin	CD Chamber Depth	EIC	Electric Inspection Cover	
rd	DHL Door Head Level	ER	Earth Rod	
top	DSL Door Sill Level	FH	Fire Hydrant	
rete Post	DPC Damp Proof Course	FWIC	Foul Water Inspection Cover	
eric Cupboard	EL Eaves Level	GIC	Gas Inspection Cover	
eric Pole	FFL Finished Floor Level	GM	Gas Meter	
er Bed	FRL Flat Roof Level	GV	Gas Valve	
hydrant	ICL Cover Level	G	Gully	
Light	ID Invert Depth	IC	Inspection Cover	
Pole	IL Invert Level	KI	Kerb Inlet	
Post	OD Outlet Depth	LHP	London Hydraulic Power	
ntion Box	OL Outlet Level	MDC	Metal Drainage Channel	
ox	PWL Parapet Wall Level	MW	Monitoring Well	
Marker Post	RL Ridge Level	NFI	No Further Information	
ating Ballard	SD Sump Depth	RE	Rodding Eye	
Hole	SFD Softif Depth	SDIC	Service Duct Inspection Cover	
Post	SFL Softif Level	SV	Stop Valve	
able Post	SILT Silt Level	SWCP	Storm Water Catch Pit	
er	SL Sump Level	SWIC	Storm Water Inspection Cover	
Post	SSL Structural Slab Level	TCIC	Traffic Control Inspection Cover	
Plate	TFL Top of Fence Level	TIC	Telescope Inspection Cover	
Box	THL Threshold Level	UIC	Unidentified Inspectional Cover	
ng Meter	TTL Top of Tree Level	UTR	Unable to Raise	
ctor Post	TWL Top of Wall Level	WIC	Water Inspection Cover	
Sign	USL Underside Level	WM	Water Meter	
ey Station	WL Water Level	WWO	Water Wash Out	
Tap	WHL Window Head Level	WSV	Water Stop Valve	
hone Call Box	WSL Window Sill Level			
c Light	FENCES & WALLS		SURFACES	
Light Control Box	BW Block Wall	BPav	Brick Paving	
ng Post	DPC Damp Proof	Conc	Concrete	

opies an heights shown as indicative only. Tree species to the best of the Surveyors knowledge. If tree species are than the services of an Arborist should be employed. tree canopies are shown in a separate layer, called which is turned off for presentation purposes.

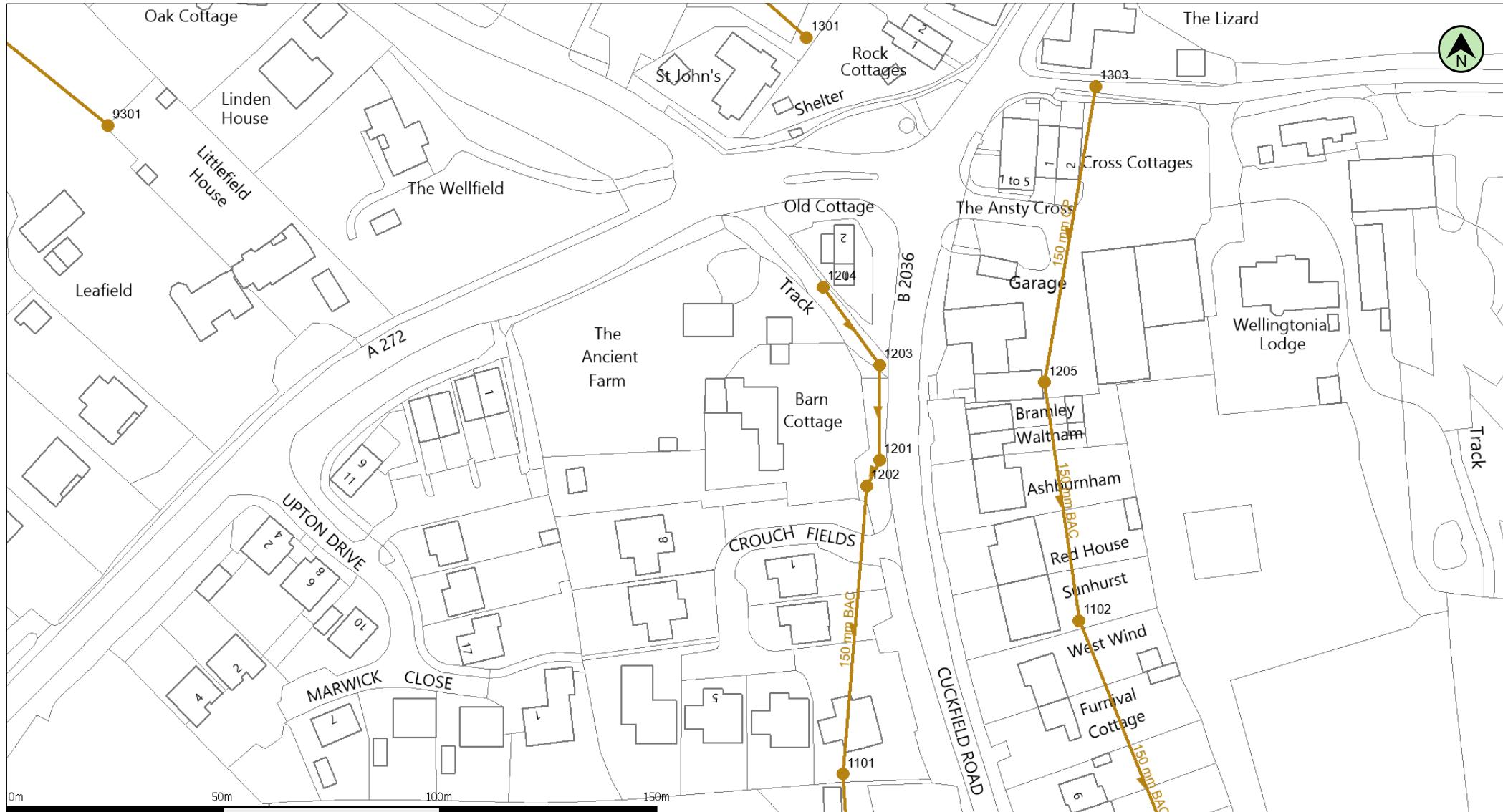
tion: Trunk/Canopy/Height

Embology

	Single Gate		Telecom Overhead
	Double Gate		Power Overhead
	Banking		Foul Water
	Step Up		Surface Water
	Diameter shown in mm		Combined Water
	Survey Station		Unknown Services
			Change of Surface
			Drop Kerb
			Fence
			Fence
			Wall
			Kerb
			Building Face
			Overhead Feature
			Trench Scar
			Tree Canopy
			Bushes/Foliage/Overgrowth
			Tree Canopy Extents

scription by date

dam Hollingdale



nd at Barn Cottage

sty
wards Heath

17 Aug

Topographical Survey				
	DATE: July 2024	SURVEYED: HH	DRAWN: HH	CHECKED: KD
72	DRAWING NO: 24072_01		REVISION: -	

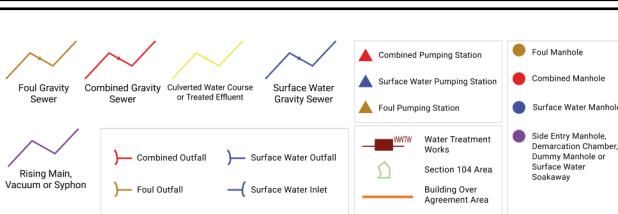
(c) Crown copyright and database rights 2025 Ordnance Survey AC0000808122

Date: 23/05/25

Scale: 1:1250

Map Centre: 529093,123237

Data updated: 20/05/25


Our Ref: 1778415 - 1

Wastewater Plan A4
Powered by digitat

The positions of pipes shown on this plan are believed to be correct, but Southern Water Services Ltd accept no responsibility in the event of inaccuracy. The actual positions should be determined on site. This plan is produced by Southern Water Services Ltd (c) Crown copyright and database rights 2025 Ordnance Survey AC0000808122. This map is to be used for the purposes of viewing the location of Southern Water plant only. Any other uses of the map data or further copies is not permitted.

WARNING: BAC pipes are constructed of Bonded Asbestos Cement.

WARNING: Unknown (UNK) materials may include Bonded Asbestos Cement.

kdaines@gtacivils.co.uk	
13829/FVV	

Appendix C

Excerpts from Site Investigation

3. SITE WORKS

The intrusive site works comprised the excavation of a single hand dug trial pit, designated TP01, which was dug to an average depth of 1.21m below ground level. The intrusive work was carried out on the 13th June 2025. The location of the exploratory hole is shown on Figure 2.

Falling head soakage testing was undertaken in the trial pit in general accordance with the test methodology given by BRE guidance¹, other than the pit was filled only once rather than the three times suggested by the digest, due to the slow draining characteristics of the soils. The results of the testing along with the infiltration rate calculations are included in the appendices.

Descriptions of the strata encountered and comments on groundwater conditions are shown in the appended exploratory hole record, together with explanatory notes to assist in their interpretation.

¹ Section 3.2.3 of Building Research Establishment (BRE) Digest 365, 2016.

4. GROUND CONDITIONS

4.1 Stratigraphy

4.1.1 *Surface Covering*

A 200mm thick surface covering of topsoil was encountered at the surface of the exploratory hole.

4.1.2 *Upper Tunbridge Wells Sand*

Underlying the topsoil, the investigation generally progressed into slightly gravelly silty clay deposits which persisted to the full extent of the trial pit, averaging 1.21m below ground level. The gravel content comprised initially of siltstone to 0.50m depth, with mudstone and siltstone present below.

These deposits are considered to represent the Upper Tunbridge Wells Sand indicated to underlie the site on BGS geological maps.

4.2 Groundwater Conditions and Stability

The trial pit was recorded to be dry and stable during excavation.

It should be noted that water levels within the exploratory hole may not have equilibrated with the groundwater table at the time the readings were recorded and that groundwater levels should be expected to fluctuate seasonally.

5. STORMWATER INFILTRATION SYSTEMS

In-situ infiltration testing² was carried out in trial pit TP01. From the test results a calculation was made to determine the infiltration rate that could be expected for infiltration systems constructed into the underlying Upper Tunbridge Wells Sand soils.

During the test performed within trial pit TP01 the water level within the test pit only fell to 87% of the initial test depth, and as such the calculation of the soil infiltration rates in accordance with the BRE digest was not possible. The soil infiltration rate has therefore been calculated by dividing the volume of water lost during the test by the product of the average surface area of the trial pit in contact with water during the test period and the test duration in seconds.

The infiltration rate derived from the test is summarised in the following table.

Table 2. Calculated Infiltration Rate

Exploratory Hole	Top of Response Zone (m bgl)	Bottom of Response Zone (m bgl)*	Stratum	Infiltration Rate (f) (m/sec)
TP01	0.59	1.21	Upper Tunbridge Wells Sand	9.45×10^{-7}

Notes: *Average pit base depth

The value 'f' is equivalent to the soil infiltration coefficient 'q' quoted in the Construction Industry Research and Information Association (CIRIA) Report 156.

The results from the infiltration tests should be provided to engineers responsible for the design of the drainage system.

To comply with building regulations³, point discharging infiltration systems (conventional ring or trench soakaways) are required to be constructed a minimum of 5.0m away from proposed or existing buildings.

The infiltration testing conducted in the trial pit is intended to provide calculated soil infiltration rates to assist in the preliminary design of infiltration systems at the site. However, it should be noted that Regulators/Local Authorities may require further testing to be undertaken at a later stage in accordance with the BRE365 guidance. This guidance states the testing should be carried out at the locations and depths of the proposed soakaways, which will not be known until preliminary drainage design has been undertaken.

Monitoring of groundwater levels during the worst annual case (winter period) is often a requirement of Local Authorities and the BRE365 guidance suggests this should be undertaken prior to finalising design of infiltration systems.

In the event that discharge to ground via infiltration systems is proposed, it is recommended that designers of the system provide for the prevention of pollution of groundwater. In this regard due consideration should be given to guidance provided within BRE 365 and by the Environment Agency.

² Conducted in general accordance with the requirements of BRE 365, Soakaway Design.

³ The Building Regulations 2010; Part H; Drainage and Waste Disposal

Hand Pit

TP01

Sheet 1 of 1

Hole Type
HP

Easting

Northing

Ground Level (m)

Scale
1:25

Project Name

Project No.

Barn Cottage,

P17248

2025-06-

Start Date
2025-06-13

End Date
2025-06-13

Client

Consultant

Contractor

Site: Barn Cottage, Cuckfield Road, Ansty, West Sussex

Project Ref: P17248

Test Location Reference
TP01
Test Number
1

Width of Pit

0.32 m

W

Length of Pit

1.03 m

L

Depth of Pit

1.21 m

D

Pit type

Open

Volume of water introduced into pit

0.203 m³

Initial head of water

0.62 m

h₀

Water level at start of test

0.59 m

Water level at end of test

0.67 m

Volume of water discharged from pit

0.026 m³

Duration of test

247 min

Average soaked surface area

1.88 m²

Time for water level to fall to 75% of initial head

Not reached min

t_{p75}

Time for water level to fall to 25% of initial head

Not reached min

t_{p25}

Depth to water at 75% of initial head

Not reached m

d₇₅

Depth to water at 25% of initial head

Not reached m

d₂₅

Time for the water level to fall from 75% to 25% of initial head

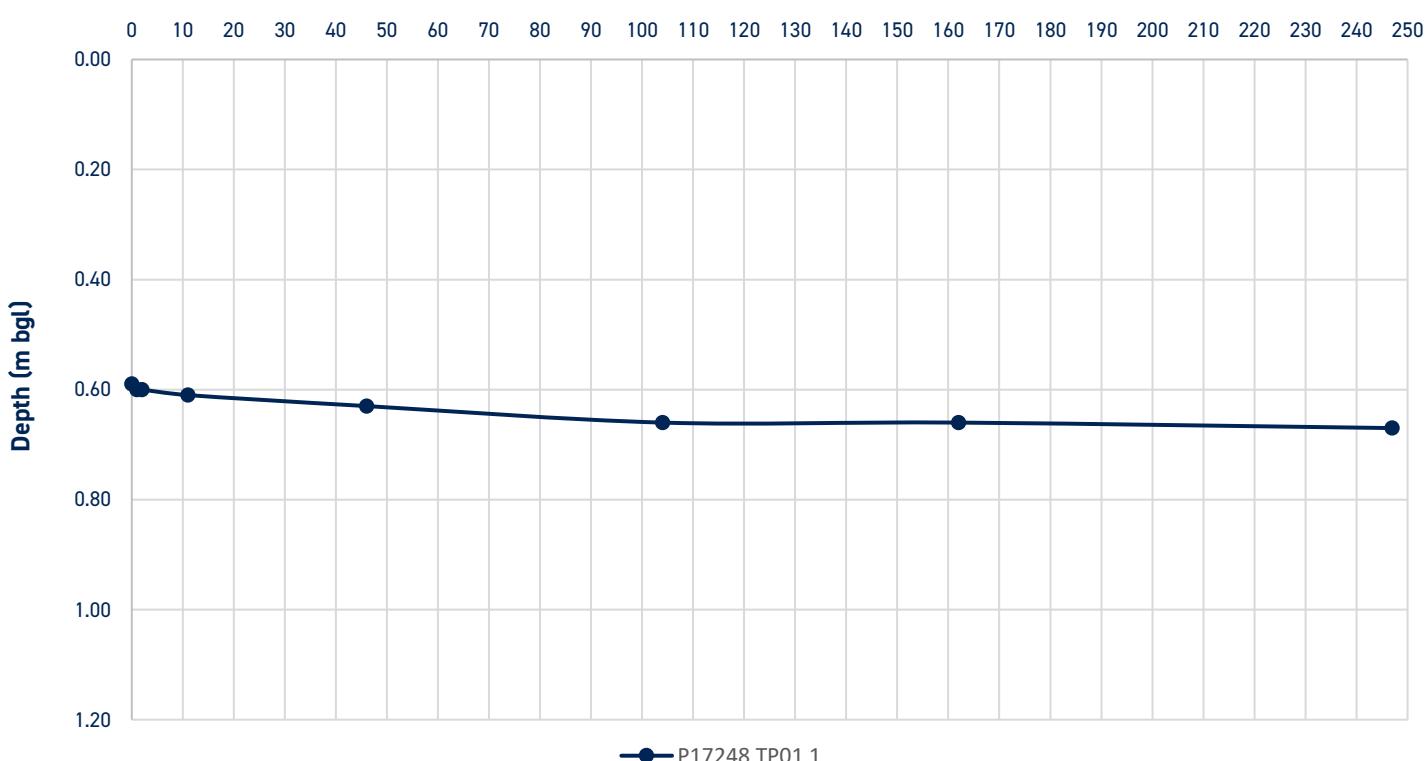
Not reached min

t_{p75-25}

Effective storage volume of water in the soakage trial pit between 75% and 25% of initial head

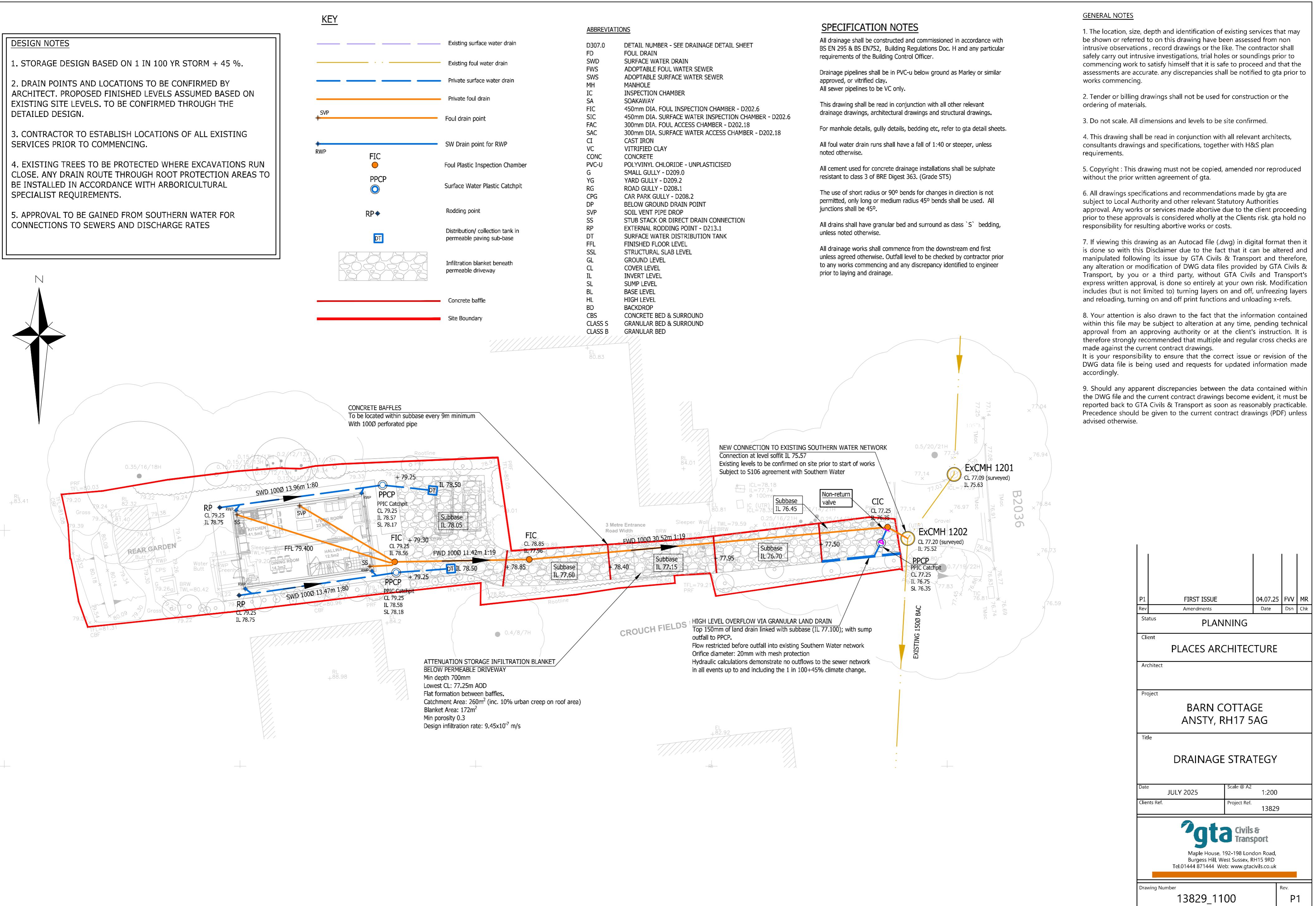
Not reached m³

V_{p75-25}


Internal surface area of the soakage trial pit up to 50% of initial head and including the base area

1.16 m²

a_{s50}
Infiltration rate
9.45E-07 m/sec f


Calculation method:

The water level did not fall below 25% of the effective storage depth. 'f' has been calculated by dividing the volume of water lost during the test by the product of the average surface area in contact with water during the test and the test duration.

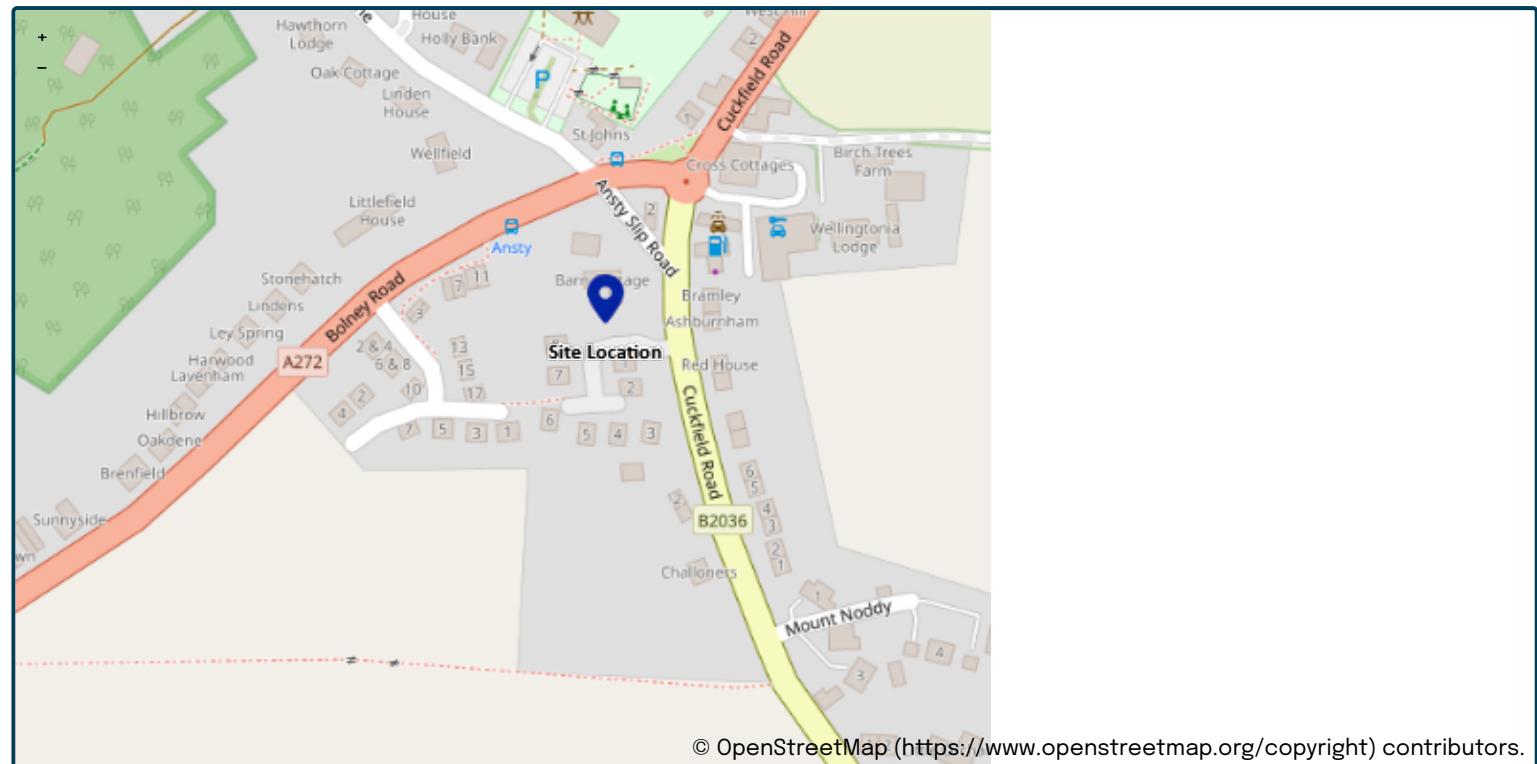
Elapsed Time (min)

Appendix D

Proposed Drainage Strategy Layout

Appendix E

Drainage Calculation Sheets


This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (CIRIA, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Project details

Date	04/07/2025
Calculated by	FVV
Reference	13829
Model version	2.0.1

Location

Site name	Barn Cottage
Site location	Ansty

Site easting

529095

Site northing

123207

Site details

Total site area (ha)	0.026	ha
----------------------	-------	----

We use cookies on this site to enhance your user experience

[OK, I AGREE](#)[MORE INFO](#)

By clicking the Accept button, you agree to us doing so.

Greenfield runoff

Method

Method

IH124

IH124

	My value	Map value
SAAR (mm)	815	mm
How should SPR be derived?	WRAP soil type	
WRAP soil type	4	4
SPR	0.47	
QBar (IH124) (l/s)	0.15	l/s

Growth curve factors

	My value	Map value
Hydrological region	7	7
1 year growth factor	0.85	
2 year growth factor	0.88	
10 year growth factor	1.62	
30 year growth factor	2.3	
100 year growth factor	3.19	
200 year growth factor	3.74	

Results

Method

IH124

Flow rate 1 year (l/s)	0.13	l/s
Flow rate 2 year (l/s)	0.13	l/s
Flow rate 10 years (l/s)	0.24	l/s
Flow rate 30 years (l/s)	0.34	l/s
Flow rate 100 years (l/s)	0.48	l/s
Flow rate 200 years (l/s)	0.56	l/s

Disclaimer

This report was produced using the Greenfield runoff rate estimation tool (2.0.1) developed by HR Wallingford and available at [uksuds.com](https://www.eksuds.com/) (<https://www.eksuds.com/>). The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at [uksuds.com/terms-conditions](https://www.eksuds.com/terms-conditions) (<https://www.eksuds.com/terms-conditions>). The outputs from this tool have been used to estimate Greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, Centre for Ecology and Hydrology, Wallingford Hydrosolutions or any other organisation for the use of these data in the design or operational characteristics of any drainage scheme.

We use cookies on this site to enhance your user experience

OK, I AGREE

MORE INFO

By clicking the Accept button, you agree to us doing so.

Nodes

	Name	Area (ha)	T of E (mins)	Cover Level (m)	Node Type	Depth (m)
	Infiltration Blanket	0.026	5.00	77.250	Junction	0.150
	Overflow			77.250	Manhole	0.500
	Outfall			77.250	Manhole	0.900

Links

	Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)
1.000	Infiltration Blanket	Overflow		2.000	0.600	77.100	76.750	0.350	5.7	100	5.01
1.001	Overflow	Outfall		2.000	0.600	76.750	76.350	0.400	5.0	100	5.02

	Name	Vel (m/s)	Cap (l/s)	Flow (l/s)	Σ Area (ha)
1.000	3.256	25.6	6.8	0.026	
1.001	3.482	27.3	6.8	0.026	

Simulation Settings

Rainfall Methodology	FEH-22	Winter CV	1.000	Drain Down Time (mins)	2880	Check Discharge Rate(s)	x
Rainfall Events	Singular	Analysis Speed	Normal	Additional Storage (m³/ha)	20.0	Check Discharge Volume	x
Summer CV	1.000	Skip Steady State	x	Starting Level (m)			

Storm Durations

15 | 30 | 60 | 120 | 180 | 240 | 360 | 480 | 600 | 720 | 960 | 1440 | 2160 | 2880

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)	Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
2	0	0	0	100	45	0	0
30	40	0	0				

Node Overflow Online Orifice Control

Flap Valve	x	Invert Level (m)	76.750	Discharge Coefficient	0.600
Replaces Downstream Link	✓	Diameter (m)	0.020		

Node Infiltration Blanket Carpark Storage Structure

Base Inf Coefficient (m/hr)	0.00340	Porosity	0.30	Width (m)	4.000	Depth (m)	0.700
Side Inf Coefficient (m/hr)	0.00340	Invert Level (m)	76.450	Length (m)	43.000	Inf Depth (m)	
Safety Factor	2.0	Time to half empty (mins)	2550	Slope (1:X)	1000.0		

Results for 2 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m ³)	Flood (m ³)	Status
960 minute summer	Infiltration Blanket	960	76.596	-0.504	0.6	6.4347	0.0000	OK

15 minute summer	Overflow	1	76.750	0.000	0.0	0.0000	0.0000	OK
15 minute summer	Outfall	1	76.350	0.000	0.0	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m ³)
960 minute summer	Infiltration Blanket	1.000	Overflow	0.0	0.000	0.000	0.0000
960 minute summer	Infiltration Blanket	Infiltration		0.1			
15 minute summer	Overflow	Orifice	Outfall	0.0			

Results for 30 year +40% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
960 minute summer	Infiltration Blanket	960	76.876	-0.224	1.7	20.8768	0.0000	OK
15 minute summer	Overflow	1	76.750	0.000	0.0	0.0000	0.0000	OK
15 minute summer	Outfall	1	76.350	0.000	0.0	0.0000	0.0000	OK
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	
960 minute summer	Infiltration Blanket	1.000	Overflow	0.0	0.000	0.000	0.0000	
960 minute summer	Infiltration Blanket	Infiltration		0.1				
15 minute summer	Overflow	Orifice	Outfall	0.0				

Results for 100 year +45% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
1440 minute summer	Infiltration Blanket	1380	77.041	-0.059	1.6	29.3799	0.0000	OK
15 minute summer	Overflow	1	76.750	0.000	0.0	0.0000	0.0000	OK
15 minute summer	Outfall	1	76.350	0.000	0.0	0.0000	0.0000	OK
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	
1440 minute summer	Infiltration Blanket	1.000	Overflow	0.0	0.000	0.000	0.0000	
1440 minute summer	Infiltration Blanket	Infiltration		0.1				
15 minute summer	Overflow	Orifice	Outfall	0.0				

Appendix F

SuDS Maintenance Plan

1. Introduction

This Plan sets out the framework for the management of the proposed sustainable drainage systems (SuDS) and foul drainage network. The document will be updated with further information through the next stage of detailed design and coordination. At this stage, what is set out herein is intended to be sufficient to demonstrate the viability of the proposed SuDS and foul drainage maintenance regime for planning purposes.

2. Ownership & Maintenance Responsibilities

The development is a single private dwelling and responsibility for the maintenance of the drainage system will be borne solely by the Owner.

Key elements of the drainage system which require maintenance are:

- Infiltration Blanket
- Pipes and Chambers

The following sections show schedules detailing the maintenance requirements for each of the main drainage items used within the scheme. The Owner will undertake the inspections and maintenance activities in accordance with these schedules or engage with specialist maintenance contractors to undertake maintenance tasks on their behalf.

Additional reference has been made to currently established best practice and guidance documents such as The SuDS Manual (CIRIA C753, 2015) and other resources available at the susdrain website.

This Plan is to be a live document. The frequency of maintenance intervals may need to be increased or decreased based on the observed performance of the drainage systems over time.

3. Health and Safety

All those responsible for and involved in the maintenance of the site drainage systems should be safety-conscious and comply with the relevant health and safety legislation. This includes:

- The Health and Safety at Work etc Act 1974
- The Management of Health and Safety at Work Regulations 1999
- The Workplace (Health, Safety and Welfare) Regulations 1992

The Employer of maintenance operatives is responsible for suitable risk assessment and management to ensure safe working conditions and practices. Measures to protect potential visitors must also be drawn up.

Specialist contractors used should work to industry guidelines and be able to demonstrate safe working practices.

Employers have a duty to employees to inform them about the risks of their work environment and to decrease the risk as far as reasonably practicable. Appropriate personal protective equipment (PPE) should be provided and practices/policies implemented based on risk assessments.

Operatives should be trained for working near water. Risks of contaminated water should be considered. Checking for open cuts and using nitrile gloves, waterproof plasters etc is advised.

Entry of pipes, chambers and culverts should be avoided. Work should be carried out from the surface using appropriate equipment. In the event that entry cannot be avoided to perform a critical task, the required safety training, protection measures and precautions must be implemented prior to entry. Lone working should never be attempted.

For further information refer to Section 36 of The SuDS Manual (CIRIA C753).

4. Schedule A – Sewers, Manholes, Gullies, Channel Drains

Regular inspection and maintenance are required to ensure the effective long-term operation of private drains, manholes, gullies & channel drains.

All gullies and drainage are private and to be maintained by the homeowner. Operation and maintenance requirements for all sewers, manholes, gullies and channel drains are described in the following table:

Schedule	Action	Frequency
Regular Maintenance	Inspect and identify any areas that are not operating correctly. If required, take remedial action Common yard & car park & other hard standing areas to be swept clear of debris, to prevent possibility of blockages to the receiving drainage systems Debris removal from gullies & channel drains (where may cause risks to performance) Lift and inspect receiving manholes to check for any blockages	6 Monthly intervals Monthly Monthly intervals, after autumn leaf fall, or as required based on specific observations Monthly
Remedial Actions	Repair any damaged gully or channel drain gratings. Replace / fix any loose channel drain covers	As required As required

Where appropriate refer also to specialist drainage manufacturer's information and maintenance requirements.

In all instances, inspection and cleaning should be carried out only by a specialist contractor and in accordance with the guidelines given in 'Safe Working in Sewers and at Sewage Works' published by National Joint Health and Safety Committee for the Water Services.

5. Schedule B – Infiltration Blanket

Inspection Frequency and Maintenance Requirements: as per table below.

Schedule	Action	Frequency
Regular Maintenance	Inspect for sediment and debris in pre-treatment components Cleaning of gutters and any filters on downpipes Trimming any roots that may be causing blockages	Annually Annually (or as required based on inspections) Annually (or as required based on inspections)
Occasional Maintenance	Removal of sediment from pre-treatment devices (silt trap/catchpit) Remove tree roots or trees that are close to the blanket	Six monthly As required
Remedial Actions	Rehabilitate infiltration or filtration surfaces Inspect surface for clogging, standing water and structural damage	As required Monthly
Monitoring	Inspect pre-treatment devices (silt trap/ catchpit) and ground surface for silt accumulation. Establish appropriate silt removal frequencies	Half-yearly

Sediments excavated from upstream pre-treatment devices that receive runoff from residential roof areas are generally not toxic or hazardous material and can be safely disposed of by either land application or landfilling. However, consultation should take place with the environmental regulator to confirm appropriate protocols. Sediment testing may be required before sediment excavation to determine its classification and appropriate disposal method.

6. Contamination or Dilution of Spillage

In the event of a spillage, it is the responsibility of the landowner to clear up any spillage before it enters the drainage system. The primary method of dealing with any spillage of hydrocarbons should be using sand to soak up the leak and prevent any hydrocarbons entering the drainage system. Once sand has been contaminated it should not be washed into the drainage system but disposed of by a Licensed Contractor.

Environment Agency – Emergency Contact Number

In the event of a spillage the Environment Agency should be contacted to notify the event and seek advice. The Environment Agency Incident Hotline is **0800 80 70 60** (Freephone 24hrs).