

Bat Activity Survey 2025

Land South of Burleigh Lane

The Ecology Partnership, Thorncroft Manor, Thorncroft Drive, Leatherhead, Surrey KT22 8JB

T +44 (0) 1372 364133 E info@ecologypartnership.com W ecologypartnership.com

Contents

1.0 INTRODUCTION.....	3
BACKGROUND.....	3
SITE CONTEXT AND STATUS	4
LEGISLATION.....	4
2.0 METHODOLOGY.....	5
LIMITATIONS	5
3.0 RESULTS.....	6
REMOTE RECORDING – ANABAT ANALYSIS.....	8
RESULTS SUMMARY	9
4.0 DISCUSSION	11
BAT SPECIES AND ACTIVITY	11
RECOMMENDATIONS AND ENHANCEMENTS	13
5.0 CONCLUSIONS.....	18
6.0 REFERENCES	19

LIABILITIES:

Whilst every effort has been made to guarantee the accuracy of this report, it should be noted that living creatures are capable of migration and whilst protected species may not have been located during the survey duration, their presence may be found on a site at a later date.

The views and opinions contained within this document are based on a reasonable timeframe between the completion of the survey and the commencement of any works. If there is any delay between the commencement of works that may conflict with timeframes laid out within this document, or have the potential to allow the ingress of protected species, a suitably qualified ecologist should be consulted.

It is the duty of care of the landowner/developer to act responsibly and comply with current environmental legislation if protected species are suspected or found prior to or during works.

1.0 Introduction

Background

1.1 The Ecology Partnership were commissioned by DMH Stallard to undertake monthly bat activity surveys on the land south of Burleigh Lane, Crawley Down, RH10 4LF. The red line boundary of the site is shown in Figure 1.

Figure 1: Approximate red line boundary of the site and immediate surroundings.

1.2 A preliminary ecological appraisal (PEA) was undertaken by The Ecology Partnership in August 2025 (The Ecology Partnership, 2025). This report identified the habitats onsite as suitable to support foraging and commuting bats, notably the woodland edge which offers good connectivity to further extensive woodland in the surrounding area.

1.3 This report presents the results of The Ecology Partnership's surveys in and around the site, which aims specifically to assess how bats are using the site over the course of the 2025 survey season.

Site Context and Status

1.4 The site is located to the south of Crawley Down (TQ 35134 37154). The site covers approximately 1.7ha and consists of a grassland field, bordered by woodland. The immediate surroundings of the site consist of Burleigh Lane to the north and agricultural fields/ woodland to the east, south and west.

Description of Proposed Development

1.5 It is understood that the current proposals for the site involve the designation of 8 new self-build residential plots, with associated access, parking and gardens.

Legislation

1.6 Under the NERC Act (2006) it is now the duty of every Government department in carrying out its functions *“to have regard, so far as it is consistent with the proper exercise of those functions, to the purpose of conserving biological diversity in accordance with the Convention”*.

1.7 Bats are covered by the following relevant legislation: The Wildlife and Countryside Act (1981) (as amended); the Countryside and Rights of Way Act, 2000; the Natural Environment and Rural Communities Act (NERC, 2006); and by the Conservation of Habitats and Species Regulations (2010).

1.8 Under the WCA 1981 it is an offence to:

- intentionally, recklessly or deliberately disturb a roosting or hibernating bat (i.e. disturbing it whilst it is occupying a structure or place used for shelter or protection)
- intentionally or recklessly obstruct access to a roost (i.e. a structure or place used for shelter or protection).

1.9 Under the CHSR 2010 it is an offence to:

- deliberately capture (or take), injure or kill a bat
- intentionally, recklessly or deliberately disturb a bat, in particular (i) any disturbance which is likely to impair their ability to survive, to breed or reproduce, or to rear or nurture their young; (ii) any disturbance which is likely to impair their ability in the case of hibernating or migratory species, to hibernate or migrate; or

- (iii) any disturbance which is likely to affect significantly the local distribution or abundance of the species to which they belong
- damage or destroy a breeding site or resting place (roost) of a bat.

2.0 Methodology

2.1 The surveys followed BCT guidelines (Collins, 2023) following the night time bat walkover (NBW) methodology. This involved reviewing potential roost sources and flight lines followed by a transect survey. Surveyors were equipped with Echo Meter Touch 2 recording devices.

2.2 The predetermined transect route was designed to follow linear features such as woodland edge which bats are known to use as commuting corridors. These habitats also provide the most suitable habitat on site for foraging. Figure 2 displays the layout of the transect route.

2.3 The surveys started at sunset and observations were maintained for 2 hours. Bats usually emerge about twenty minutes after sunset depending on the species, light level, weather conditions and time of year. Peak activity will normally last for about two hours after sunset, during times of peak insect activity.


2.4 Two Anabat remote recording devices were deployed for at least five consecutive nights from July to October. These were placed within boundary features considered most suitable for foraging and commuting bats, to gauge activity levels and species diversity on site and within the immediate vicinity. Their locations are shown in Figure 2. The subsequent recordings were analysed using Anabat Insight.

Limitations

2.5 It should be noted that whilst every effort has been made to provide a comprehensive description of the site, no single investigation could ensure the complete characterisation and prediction of the natural environment.

2.6 Due to the instruction of this project occurring after the spring survey season, only summer and autumn surveys have been carried out. As such, as a precaution, mitigation

in this report has been produced on the assumption that spring bat activity was similar, and no less, than the peak activity period in the summer.

Figure 2: Location of the transect route (yellow line) and anabat locations (blue dot)

3.0 Results

- 3.1 Bat activity surveys have been carried out from July-October 2025. The following section summarises the results from these surveys, both the NBW and the remote recording review.
- 3.2 Two bat surveyors followed the predetermined route illustrated in Figure 2. Activity levels, foraging and commuting behaviour were recorded and species were identified using bat detectors. Surveyors were on site 15 minutes before sunset until 2 hours after sunset. The use of Anabat remote recording devices were placed around the site in the same locations each month as shown in Figure 2.
- 3.3 The date, time and weather conditions during for each monthly survey is shown in Table 1.

Table 1. Summary of the date, time and weather conditions during each NBW survey.

Survey date	Time of sunset	Weather conditions
20 th August 2025	20:11	Cloud cover 60%, 9mph wind and dry with temperature starting at 18°C and then dropping to 15°C at the end of the survey.
23 rd September 2025	18:58	Cloud cover 100%, 13mph wind and recent drizzle, with temperature starting at 13°C and then dropping to 12°C at the end of the survey.

20th August 2025

3.4 The first bat was recorded at 20:51 and was a common pipistrelle commuting in the south west corner of the site. Common pipistrelles utilised the south-western corner of the site throughout the evening, with further commuting passes recorded at 20:56 and 21:40, plus a soprano pipistrelle pass at 21:39. At 21:08, two common pipistrelles were observed commuting north along the eastern site boundary. By far the most active area of the site was the northern boundary, with up to four common pipistrelles foraging back and forth from 21:11 to 21:32. Commuting behaviour was also observed along this northern boundary throughout the entire survey. No other bat species were recorded during the survey.

23rd September 2025

3.5 The first bat species recorded was a noctule pass over the western site access track at 19:01. This was followed by a soprano pipistrelle commuting pass in the same location at 19:06. From 19:10 a single common pipistrelle was continuously foraging up and down the northern site boundary, this was observed until 19:43. From 19:14 another common pipistrelle was foraging around in loops in the south east corner of the site. Several other single common pipistrelle commuting passes were recorded throughout the night, including along the eastern site boundary, where a single noctule was also heard. No other bats were recorded during the survey.

Remote Recording – AnabatAnalysis

3.6 Anabat recording devices were deployed on site at locations shown previously in Figure 2. They were positioned in the north western and south eastern corners along the woodland edge, and were deployed for 5 nights each on the 23rd July, 20th August, 23rd September 2025 and 22nd October.

July

3.7 In July a total of six species were recorded; common pipistrelle, soprano pipistrelle, Leisler's, noctule, myotis species and brown long eared bats.

3.8 In the north location, a total of 2506 common pipistrelle call registrations were recorded (94.2% of total calls), which were the dominant species. Soprano pipistrelles were the second most commonly recorded species at 142 registrations (5.3%), myotis species passed 7 times (0.3%), brown long-eared had 3 passes (0.1%), and Leisler's and noctules had a single pass each (0.04%).

3.9 In the southern location 102 common pipistrelle passes were recorded (72.3%). Myotis sp. passed 19 times (13.5%), soprano pipistrelle passed 16 times (11.3%) and Leisler's passed 4 times (2.8%).

August

3.10 In August a total of seven species were recorded; common pipistrelle, soprano pipistrelle, myotis species, brown long eared bats, serotine, Leisler's and noctule.

3.11 In the northern location, a total of 789 common pipistrelle registrations were recorded, which were the dominant species (92.8% of total calls). Soprano pipistrelles were the second most commonly recorded species at 27 registrations (3.2%). Myotis species passed 22 times (2.3%), brown long-eared bats had 7 passes (0.8%), serotine and noctule each had two passes (0.2%) and a single Leisler's pass was recorded (0.1%).

3.12 In the southern location, common pipistrelles were also the most dominant species with 277 passes (92.3%) over the five nights. Myotis species were recorded passing 17 times (5.7%) and soprano pipistrelles passed 6 times (2%).

September

3.13 In September a total of six species were recorded including common, soprano and *Nathusius's pipistrelles*, *myotis* species, noctule and brown long-eared.

3.14 In the north location, a total of 352 common pipistrelle registrations were recorded (85.9%). Both soprano pipistrelles and *myotis* sp. called 26 times each (6.3%), brown long-eared called 4 times (1.0%) and both noctule and *nathusius'* each had a single pass (0.2%).

3.15 The southern location recorded significantly fewer passes, with 72 common pipistrelle passes (70.0%), 19 *myotis* sp. passes (18.4%), 10 soprano pipistrelle passes (9.7%) and 2 passes from *Nathusius'* pipistrelle (1.9%).

October

3.16 In the northern location, a very high proportion of the calls over the five nights belonged to common pipistrelle, with 298 passes (97.4%). *Myotis* sp. had 4 passes (1.3%), soprano pipistrelles passed twice (0.7%) and Leisler's and brown long-eared both had a single pass each (0.3%).

3.17 The southern location recorded a notably low number of passes during October. Both common pipistrelles and *myotis* sp. passed 7 times each (43.8%), and a single pass was recorded from both soprano pipistrelle and brown long-eared bat (6.3%). It should be noted that no bat echolocation were recorded on 23rd October; the northern location also recorded a very low number of passes on this evening, so it is likely a result of poor weather.

Results Summary

3.18 The following tables summarise the data collected on site during the 2025 survey period.

Table 2: Total bat passes recorded by species

Bat species	Total number of recordings	Percentage of total
Common Pipistrelle	4403	92.0
Soprano Pipistrelle	230	4.8
Myotis sp.	121	2.5
BLE	16	0.3
Leisler's	7	0.1
Noctule	4	0.08
Nathusius' Pipistrelle	3	0.06
Serotine	2	0.04
Total	4786	

3.19 It can be seen from Table 3 that activity was dominated by common pipistrelles. Soprano pipistrelles and myotis species are also considered to be well represented across the site.

3.20 Other species are considered to have low-level use, including brown long eared bats, Leisler's, noctules, Nathusius' pipistrelles and serotines.

3.21 Table 3 shows the total number of passes recorded at each Anabat location within each month.

Table 3: Total bat passes recorded each month by location in 2024

Anabat Location	Total number of passes per month				
	July	August	September	October	Total
North	2660	850	410	306	4226
South	141	300	103	16	560
Total	2801	1150	513	322	4786

3.22 It can be seen from Table 4 that higher levels of activity were present in the north of the site, with lower levels of activity in the south.

3.23 Table 3 also shows the highest levels of activity occurred in July, with the lowest levels in October.

3.24 Table 4 shows the total number of passes made per species at each Anabat location. The table also shows the average number of passes per night per species at each Anabat location. Each anabat recorded for a total of 5 nights per month, so an average number of passes over 20 nights has been calculated in this table.

Table 4: Number of passes made by each species and average pass per species per night at each Anabat location

	North		South	
	Number of passes	Average passes per night	Number of passes	Average passes per night
Common Pipistrelle	3945	197.3	458	22.9
Soprano Pipistrelle	197	9.9	33	1.7
Myotis sp.	59	3.0	62	3.1
BLE	15	0.8	1	0.05
Leisler's	3	0.2	4	0.2
Noctule	4	0.2	-	-
Nathusius' Pipistrelle	1	0.05	2	0.1
Serotine	2	0.1	-	-
Total	4226		560	

3.25 It can be seen that there are variables in the two Anabat locations, with notably lower numbers of species recorded at the southern location for most species. The average passes per night for myotis sp., Leisler's and Nathusius' pipistrelle, however, was higher in the southern location, albeit in very low numbers.

4.0 Discussion

Bat Species and Activity

4.1 The walked transect activity surveys did not identify significant numbers of bat calls. Common pipistrelles and soprano pipistrelles were the dominant species with only low levels of activity for noctules across the site. The northern boundary was of particular interest for foraging common pipistrelles.

4.2 The 2025 surveys placed remote recording devices in two locations and were established in July, August, September and October. The surveys identified the month of July as having the highest number of registrations, which decreased with each subsequent month, with October having the lowest number of bat passes.

- 4.3 Myotis calls were grouped together as they could not be confidently identified to species; these have been grouped in the general 'myotis species' category but could include multiple species. Other species recorded included common and soprano pipistrelles, *Nathusius pipistrelle*, noctule, serotine, brown long eared bat and Leisler's, were all recorded across the site.
- 4.4 Remote activity surveys were also dominated by common and widespread species, largely common pipistrelle bats.

Anabat Data

- 4.5 Higher levels of bat activity were recorded across the site on the Anabat detectors in comparison with the walked transect surveys, with the highest levels of activity overall being recorded in July. However, it must be noted that remote recording does not distinguish between a single individual making numerous passes whilst foraging around a particular feature, and between more numerous individual bats commuting across the landscape. As such, walked transects provide a good understanding of how a particular feature is being used.
- 4.6 The majority of bat passes recorded on site during both the walked transects and remote recording surveys, were from common pipistrelles, with a total average of approximately 220 passes per night over the two Anabat locations. During the walked transects, soprano pipistrelle were also frequently recorded. These species are both common and widespread across the UK, with population estimates of 3,040,000 and 4,670,000 respectively (Mathews *et al.*, 2018). Foraging bats likely produce repeated passes within a small area whilst hunting for invertebrates and this was confirmed during the transects when single individuals were found to produce numerous passes by simply foraging up and down the same feature such as the northern woodland edge. Therefore, the high number of common and soprano pipistrelles passes recorded on the remote recording on site are therefore considered likely to result from a moderately small number of foraging bats.
- 4.7 A number of myotis species calls were also recorded on site, averaging approximately 3 passes per night on both the northern and southern anabat. It is therefore considered

likely that all boundary habitats on site are used as foraging and commuting habitats for Myotis species, albeit in low numbers.

- 4.8 Low activity levels of Leisler's, serotines, noctules, brown long-eared bats and Natusius' pipistrelles were identified onsite, with an average of approximately 1 or less passes per night on each Anabat. As such, these species are considered to use the site on an occasional basis and that the site do not form part of their core foraging habitat.
- 4.9 The surveys conducted by Urban Edge Consultancy through 2023, including walking transects in May, June, July, August and a dusk and dawn in September, with remote recording also conducted. During the walked transects common pipistrelles were the most recorded species, with only soprano pipistrelles, myotis and long eared bats recorded in low numbers. During the May – September remote recordings, 9,790 common pipistrelles were recorded, with the next higher recorded as soprano pipistrelles and myotis species. Very low numbers of other species including Leisler's and noctule, Natusius, and brown long eared bat. The surveys are considered to be similar in terms of species composition to the Ecology Partnership's surveys across 2025.

Recommendations and Enhancements

- 4.10 The scheme has been designed to retain and buffer the majority of the existing woodland edges, therefore avoiding impacts through the loss or severance of flightlines.
- 4.11 Where development occurs, a small section of woodland will be removed for access road and a small section for footpath access. Large trees on either side of the road would aid in providing an aerial bridge over the road with overhanging branches and thereby reduce the gap over which bats have to cross.
- 4.12 It is considered that the development retains the key landscape features within the site boundaries and provides enhancements (see below) for bats within the scheme. As such, impacts to bat species can be reduced to a level which would not be considered significant to the conservation status of their local populations.

Lighting recommendations

4.13 As it has been identified that a number of bat species make use of the boundary features on site, it is recommended that light should be directed away from these features, maintaining these as 'dark corridors'. The northern boundary woodland edge in particular is a key area for bats where low levels of lighting are highly recommended as these areas have been shown to be a key foraging and commuting route.

4.14 Dark corridors must be maintained along the boundary features. Lighting can alter bat behaviour significantly in terms of light avoidance with some species unable to cross lit areas even at low light levels. For example, *Myotis* species which are on site, are known to avoid all street lights (Stone et al., 2009, 2012, 2015). Therefore, the development could seriously impact the abundance of these species on site post-development without careful design and mitigation.

4.15 In addition, lighting can affect the availability of insect prey with some groups attracted to lights, creating a 'vacuum effect' in adjacent habitats.

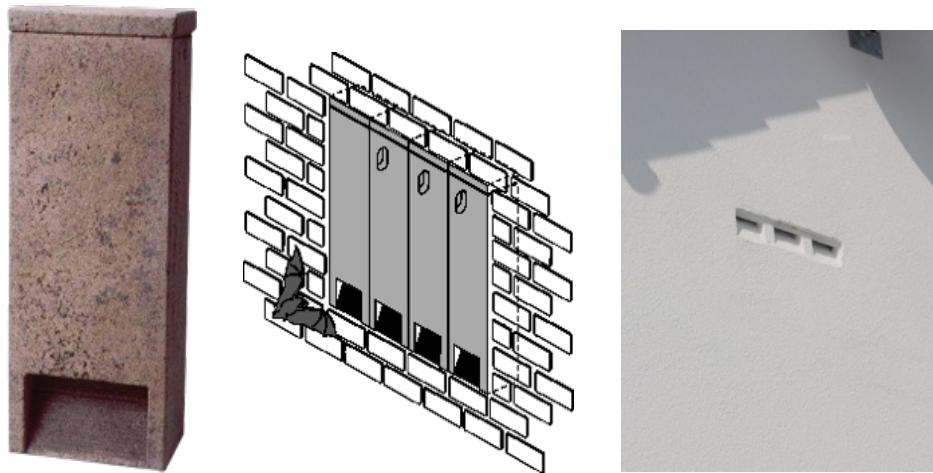
4.16 Dark corridors could be implemented through the inclusion of dark buffer zones along the habitat edges of the site. These will help to ensure that light levels (measured in lux) within a certain distance of a feature do not exceed certain defined limits.

4.17 Where lighting is required on site, a sensitive lighting scheme must be implemented. Again, collaboration between a lighting professional and ecologist may be required in order to help design this scheme but measures should include:

- The impact on bats can be minimised by the use of Light emitting diodes (LEDs) instead of mercury, fluorescent or metal halide lamps where glass glazing is preferred due to their sharp cut-off, lower intensity and their dimming capability. Lighting should be directed to where it is needed and light spillage avoided.
- This can be achieved by the design of the luminaire and by using accessories such as hoods, cowls, louvres and shields to direct the light to the intended area only.
- Soft landscape planting should also be used as a barrier or manmade features such as walls or fencing with planted climbers where required within the build can be

positioned so as to form a barrier between any development and the linear features used by bats.

Roost enhancements – boxes


4.18 Bat boxes should be erected on the existing mature trees along the northern and southern boundaries of the site. This will enhance the local bat population and provide roosting opportunities. Woodcete boxes, or similar are recommended as they are durable and support good thermal properties. Recommended boxes include:

- Vivara Pro WoodStone Bat Box – A general purpose bat box that supports a range of species (Figure 3). These can be hung on trees in a variety of heights and aspects in order to provide a variety of micro-climates.
- Large Multi Chamber WoodStone Bat Box – This is a multipurpose box designed for larger colonies and a range of bat species including pipistrelles, noctules and brown long-eared bats. These should be hung on mature trees around the site (Figure 3).

Figure 3: Vivara Pro WoodStone Bat Box (left) and Large Multi Chamber WoodStone Bat Box (right)

4.19 The development can also incorporate bat tubes integrated into the new buildings on site. It is recommended that either the Vivara Pro Build-in Woodstone bat box or the Habibat Bat Box 001 are used, Figure 4. They are unobtrusive and can fit flush into masonry of a wall during the construction phase. It is recommended that these be placed on the walls of houses close to south western and north eastern woodlands.

Figure 4: Use of bat tubes recommended within newly built houses on site

Additional planting schemes

4.20 Trees provide foraging opportunities for bats through provision of insect prey, as such it is recommended a number of the below native tree species are planted across the site post-development adjacent to new roads. This will help to improve wildlife corridors around the site for species such as badgers, amphibians, small mammals and birds. The following species are recommended to be used in enhancing existing hedgerows and in the creation of individual trees across the site:

- Oak (*Quercus robur*)
- Rowan (*Sorbus aucuparia*)
- Elder (*Sambucus nigra*)
- Goat willow (*Salix caprea*)
- Hazel (*Corylus avellana*)
- Hornbeam (*Carpinus betulus*)
- Common alder (*Alnus glutinosa*)
- Hawthorn (*Crataegus monogyna*)
- Blackthorn (*Prunus spinosa*)
- Field maple (*Acer campestre*)
- Dog rose (*Rosa canina*);

4.21 Gardens in developed areas can provide suitable foraging habitat for bats, in particular for pipistrelle species. It is recommended that planting includes native species that are of particular benefit to bats such as night-flowering species that attract night-flying invertebrate prey. The following native species are considered suitable:

- Nottingham catchfly (*Silene nutans*)
- Night-flowering catchfly (*Silene noctiflora*)
- Bladder campion (*Silene vulgaris*)
- Soapwort (*Saponaria officinalis*)
- Wild marjoram (*Orignaum vulgare*)
- Borage (*Borago officinalis*)
- Yarrow (*Achillea millefolium*)
- Primrose (*Primula vulgaris*)
- Corn marigold (*Glebionis segetum*)
- Perforate St John's-wort (*Hypericum perforatum*)
- Wood forget-me-not (*Myosotis sylvatica*)
- Ox-eye daisy (*Leucanthemum vulgare*)

4.22 Climbing plants can be grown onto trellis along the fence line dividing the gardens.

Species which can be planted include:

- Honeysuckle (*Lonicera japonica*; *L. fragantissima*; *L. standishii*);
- Clematis (*Clematis vitalba*, *C. armandii*, *C. alpina*, *C. montana*, *C. tangutica*);
- Ivy (*Hedera helix*);
- Climbing hydrangea (*Hydrangea petiolaris*);
- Dog rose (*Rosa canina*).

4.23 Log and brash piles have are recommended for the site as they are important for saprophytic bryophytes and saprophytic insects, and in turn bats. They should be placed in a variety of locations (damp and sunny spots) and next to existing vegetation, such as the woodland edge, so that there is cover immediately adjacent. They should contain a mixture of log piles and shapes with some small diameter material to create a diverse structure (Figure 5). Climbing plants previously mentioned can also be used to add value.

Figure 5: Use of log piles to be used across the site.

5.0 Conclusions

- 5.1 The site supports grassland and woodland which provide suitable foraging and commuting habitats for bats, also providing connectivity both on and off site. Therefore, further bat activity surveys were considered necessary to determine how bats utilise the site.
- 5.2 A transect route along the linear boundary features was followed on the 20th August and 23rd September 2025. The transect surveys identified moderate levels of bat activity across the site, with activity on site being dominated by common and soprano pipistrelles. Other bat species were recorded in low numbers including brown long-eared bats, myotis species, Leisler's, serotines, Natusius' pipistrelle and noctules.
- 5.3 Two Anabat detectors were placed on site each month between July and October 2025. The Anabat detectors recorded higher levels of bat activity on site and recorded a greater variety of bat species on site than on the walked transects. The northern location recorded the most call registrations onsite with 4226 calls. The results of all surveys suggest the site is largely used by common bat species such as common and soprano pipistrelles as well as myotis species. All boundary features were utilised throughout the surveys by foraging/ commuting bats, though the northern woodland edge habitat was of particular note for foraging behaviour. These features will be retained and enhanced part of the development to ensure bats can move with ease across the landscape.

5.4 In total, 8 different species were identified using the site during the 4 months. The dominant species recorded was common pipistrelles, with soprano pipistrelles and myotis species frequently recorded. Low level use of the site by other species, including serotine, noctules, brown long eared bats, Natusius' pipistrelle and Leisler's were also recorded.

5.5 Current proposals will retain and enhance most of the boundary features. Where gaps in the woodland are created for road access, large trees on either side of the road with overhanging branches will reduce the gap over which bats have to cross. These boundary features should be maintained as darkened corridors with minimal nearby lighting and a sensitive lighting scheme should also be conditioned to further minimise the potential for impacts to bats.

5.6 Recommendations have been made to also include landscape planting schemes which will create new foraging opportunities for bats in the local area, as well as new bat boxes to increase roosting opportunities. If these recommendations are adhered to, it is considered that the favourable conservation status of all bat species using the site will be maintained post-development.

6.0 References

Bat Conservation Trust (2018). *Bats and artificial lighting in the UK – Bats and the built environment series, (Guidance Note 08/18)*. Bat Conservation Trust, London.

Bat Conservation Trust (2023). *Bat Surveys – Good Practice Guidelines Second Edition*. Bat Conservation Trust, London.

Mitchell-Jones, A.J. (2004) *Bat Mitigation Guidelines*. English Nature, Peterborough.

Stone *et al.*, 2012 Stone, E. L., Harris, S., & Jones, G. (2015). Impacts of artificial lighting on bats: a review of challenges and solutions. *Mammalian Biology*, 80(3), 213-219.

The Ecology Partnership (2025) *Preliminary Ecological Appraisal, Land South of Burleigh Lane*.

Appendix 1: Raw Bat Data

July

North

	BLE	Leis	Myotis	Noc	Pip45	Pip55	Grand Total
23/07/2025			1		856	77	934
24/07/2025	1	1	3		1055	25	1085
25/07/2025	2				99	6	107
26/07/2025					41		41
27/07/2025			3	1	455	34	493
Grand Total	3	1	7	1	2506	142	2660

South

	Leis	Myotis	Pip45	Pip55	Grand Total
23/07/2025		3	1		4
24/07/2025	2	2	14	3	21
25/07/2025	1	1	15	5	22
26/07/2025		6	61	6	73
27/07/2025	1	7	11	2	21
Grand Total	4	19	102	16	141

August

North

	BLE	Leis	Myotis	Noc	Pip45	Pip55	Sero	Grand Total
20/08/2025			4		286	11		301
21/08/2025			4		220	5		229
22/08/2025	2		6		210	4	1	223
23/08/2025	3	1	6	2	46	4	1	63
24/08/2025	2		2		27	3		34
Grand Total	7	1	22	2	789	27	2	850

South

	Leis	Myotis	Pip45	Pip55	Grand Total
20/08/2025		4	1		
21/08/2025		1	2	2	
22/08/2025		2	55	1	58
23/08/2025		9	176		185
24/08/2025		1	43	3	47
Grand Total		17	277	6	300

September**North**

	BLE	Myotis	NathPip	Noc	Pip45	Pip55	Grand Total
24/09/2025	1		1	1	52	7	62
25/09/2025	1	22			120	12	155
26/09/2025	1	1			19	1	22
27/09/2025		2			76	4	82
28/09/2025	1	1			85	2	89
Grand Total	4	26	1	1	352	26	410

South

	Myotis	NathPip	Pip45	Pip55	Grand Total
24/09/2025	5		3	2	10
25/09/2025	1	1	18	2	22
26/09/2025	6		37	1	44
27/09/2025	4	1	9	3	17
28/09/2025	3		5	2	10
Grand Total	19	2	72	10	103

October**North**

	BLE	Leis	Myotis	Pip45	Pip55	Grand Total
22/10/2025		1		33		34
23/10/2025				3		3
24/10/2025				9		9
25/10/2025			4	41		45
26/10/2025	1			212	2	215
Grand Total	1	1	4	298	2	306

South

	BLE	Myotis	Pip45	Pip55	Grand Total
22/10/2025	1		2		3
23/10/2025					
24/10/2025			2		2
25/10/2025		3			3
26/10/2025		4	3	1	8
Grand Total	1	7	7	1	16

The Ecology Partnership Ltd

Thorncroft Manor

Thorncroft Drive

Leatherhead

KT22 8JB

Tel. 01372 364133

www.ecologypartnership.com

Approved by: Alexia Tamblyn MA (Oxon) MSc CEcol CEnv MCIEEM FRGS

Date: 10/11/2025