

Appendix 5

Flood Maps

Flood map for planning

Your reference Location (easting/northing) Created
Unspecified 535124/137154 25 November 2025 11:10

Your selected location is in flood zone 1, an area with a low probability of flooding.

You will need to do a flood risk assessment if your site is **any of the following**:

- bigger than 1 hectare (ha)
- in an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence which sets out the terms and conditions for using government data. <https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3>

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2025 AC0000807064. <https://flood-map-for-planning.service.gov.uk/os-terms>

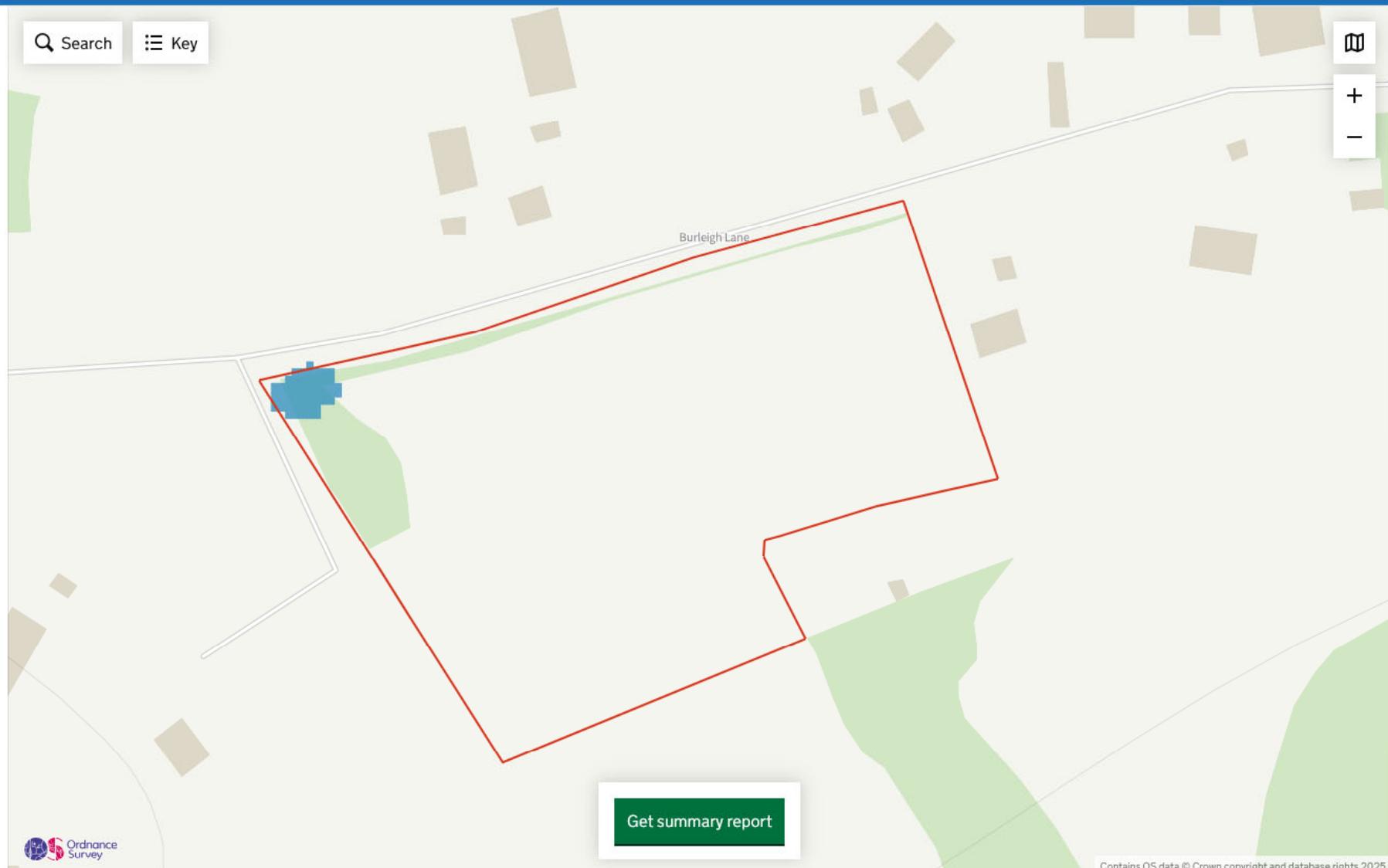
Flood map for planning

Your reference
Unspecified

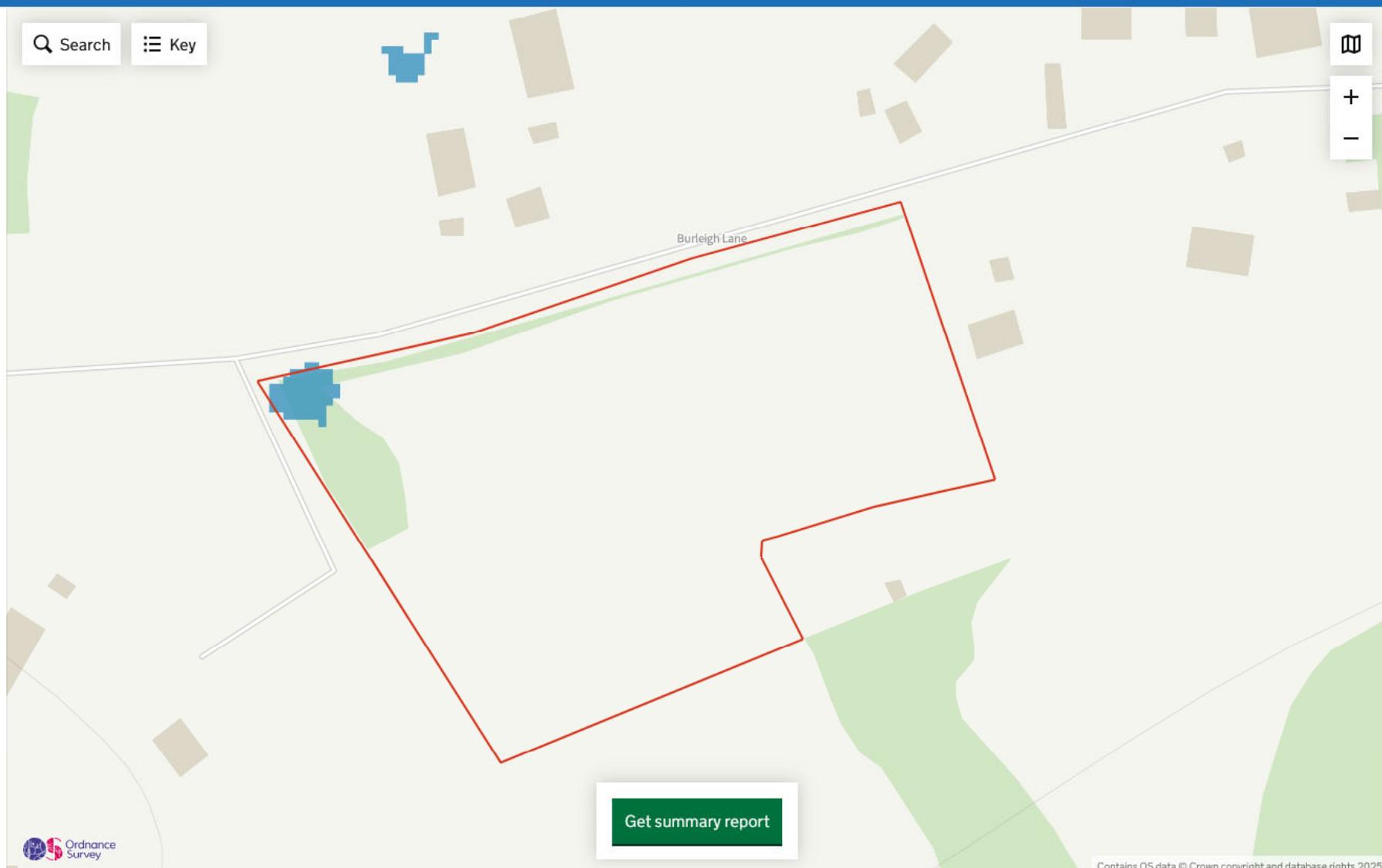
Location (easting/northing)
535124/137154

Scale
1:2,500

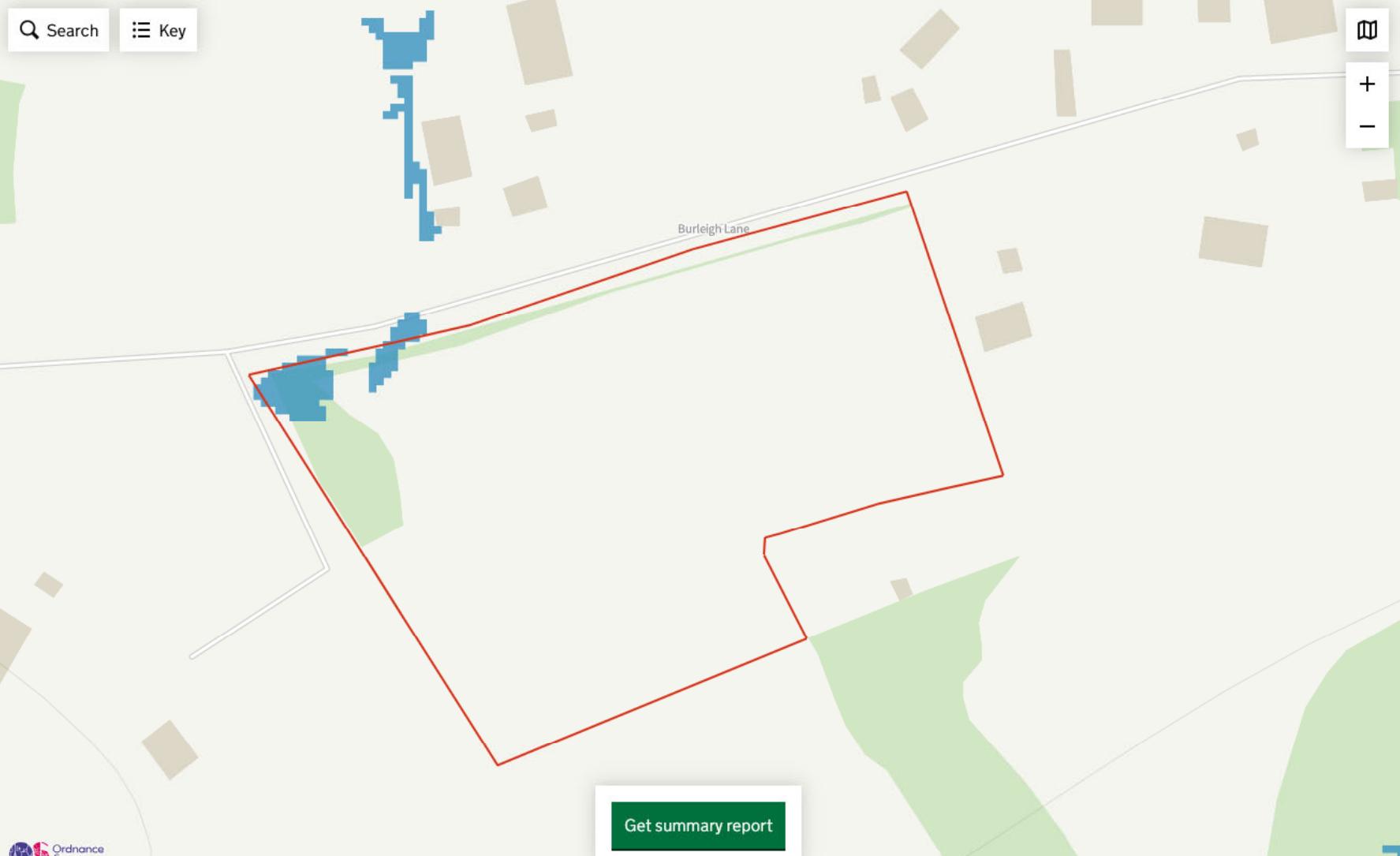
Created
25 Nov 2025 11:10


- Selected area
- Flood zone 3
- Flood zone 2
- Flood zone 1
- Flood defence
- Main river
- Water storage area

0 20 40 60m

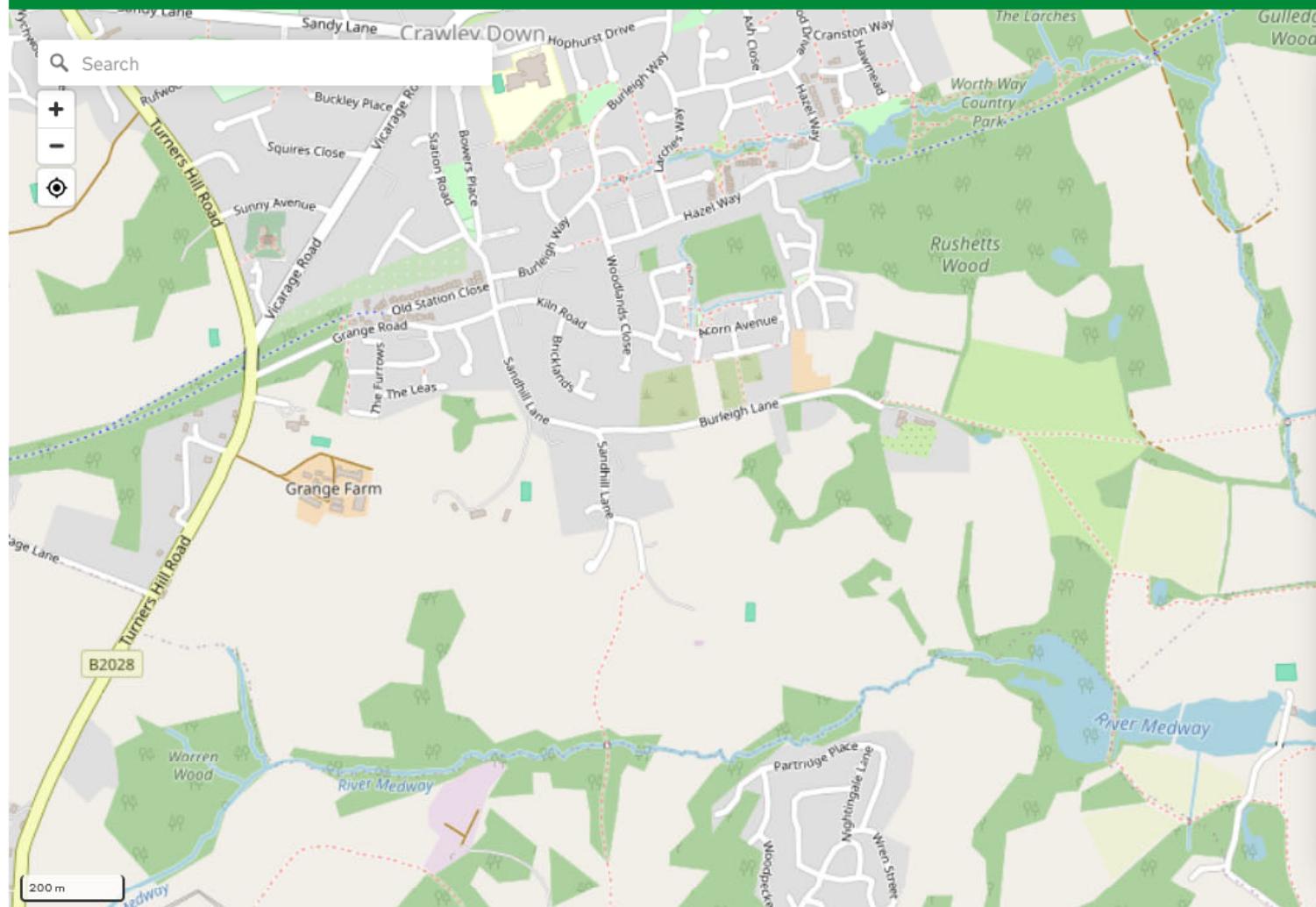

Flood map for planning

[Get a boundary report](#)[Edit](#)[Delete](#)**Datasets** Flood zones 2 and 3 Surface water None**Annual likelihood of flooding** 1 in 30 1 in 100 1 in 1000**Map features** Water storage Flood defence Main Rivers Search


Key

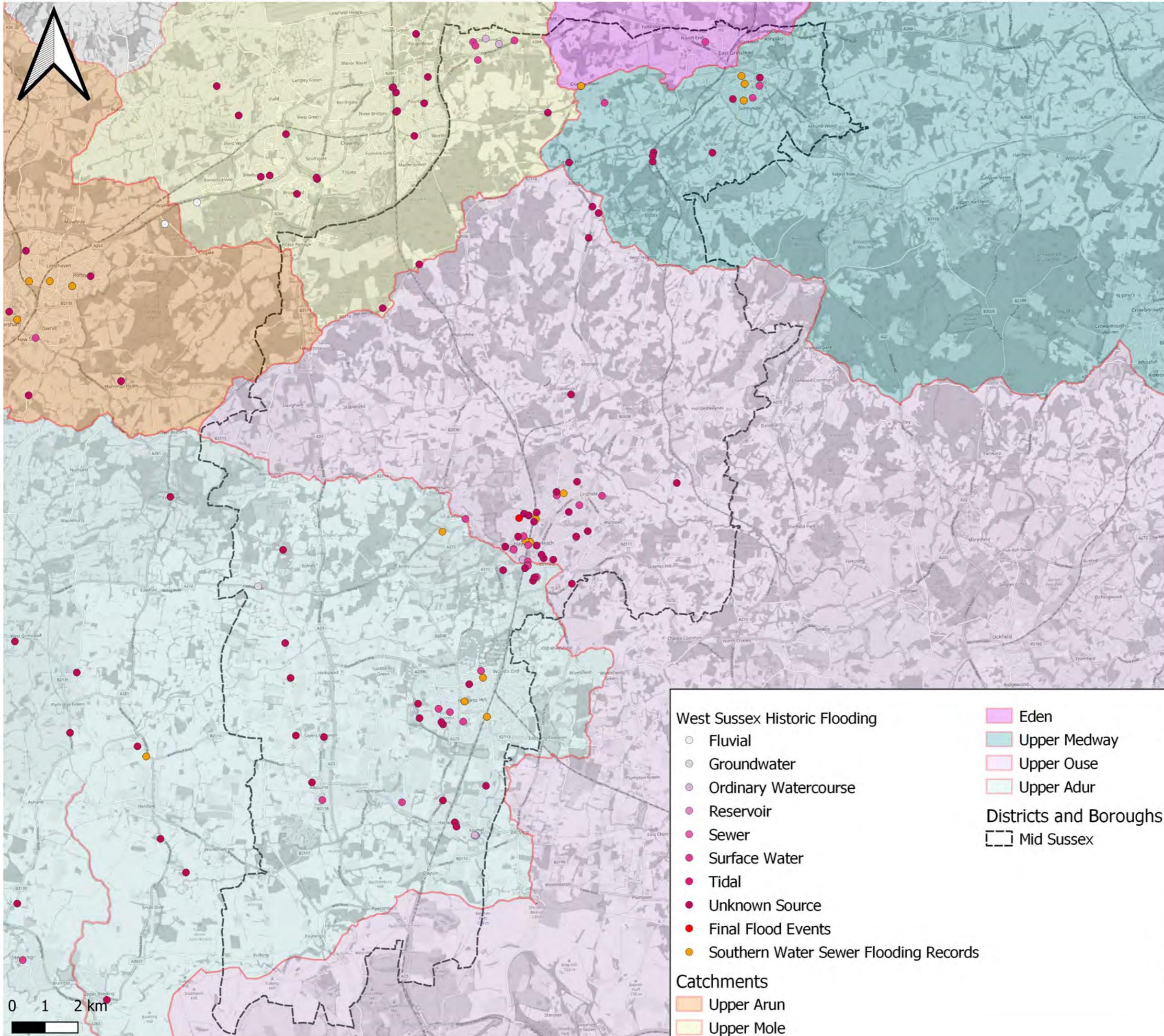
Flood map for planning

[Get a boundary report](#)[Edit](#)[Delete](#)**Datasets** Flood zones 2 and 3 Surface water None**Annual likelihood of flooding** 1 in 30 1 in 100 1 in 1000**Map features** Water storage Flood defence Main Rivers[Search](#)[Key](#)


Flood map for planning

[Get a boundary report](#)[Edit](#)[Delete](#)**Datasets** Flood zones 2 and 3 Surface water None**Annual likelihood of flooding** 1 in 30 1 in 100 1 in 1000**Map features** Water storage Flood defence Main Rivers

Defra OGC preview


[Layers](#) [Download](#)

Historic Flood Map

Environment Agency

[Historic_Flood_Map](#)

Do not scale - Use only figured dimensions
The contractor is to check all dimensions on site and report any discrepancies to the site Supervisor
This drawing is to be read in conjunction with other standard documentation

© Crown copyright and database rights. You are permitted to use this data solely to enable you to respond to, or interact with, the organisation that provided you with the data. You are not permitted to copy, sub-licence, distribute or sell any of this data to third parties in any form.

Note:
This plan is furnished as a general guide only and the Statutory Undertakers concerned state that no warranty as to its correctness is given or implied. It must not be relied upon in the excavations or other works made in the vicinity of each utilities service.

P01	7/12/2024	EM	FIRST ISSUE	AR	KW
REV	DATE	BY	DESCRIPTION	CHK	APP

DRAWING A - AUTHORISED AND ACCEPTED

WSPI

WSP House, 70 Chancery Lane, London, WC2A 1AF
+44 (0)2073 145 000
wsp.com

CLIENT:

PROJECT:

TITLE: 003 - Mid Sussex Historic Flood Map

DRAWN: EM	CHECKED: AR	APPROVED: KW
--------------	----------------	-----------------

PROJECT 70121454 SCALE 1:1 DATE: 19/12/2024

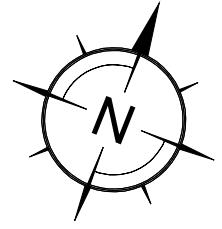
DRAWING 70121454-WSP-DG-WA-0003-P01

© WSP Global Inc

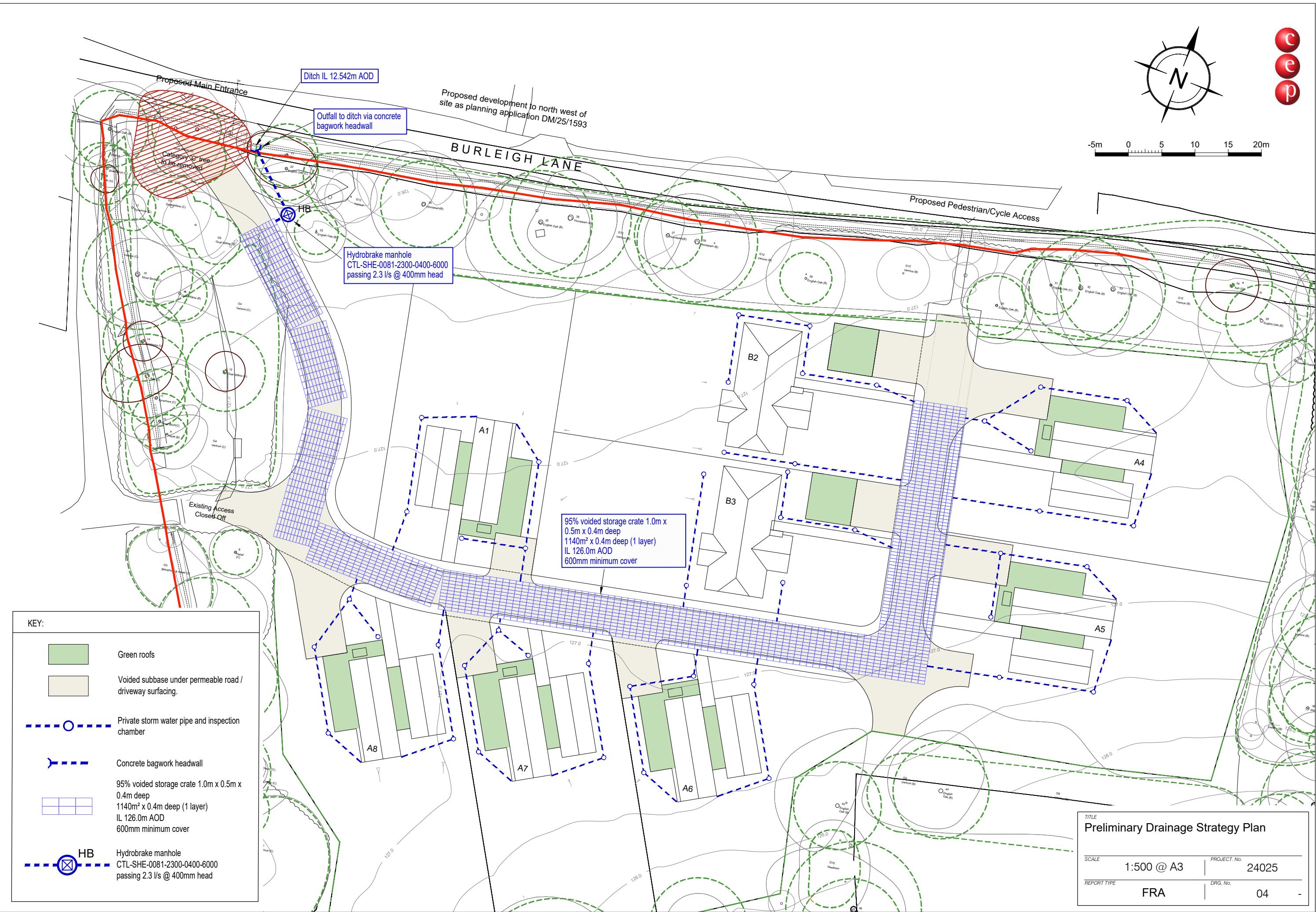
Appendix 6

Proposed Site Layout and

Positively Drained Areas Plan



Appendix 7


Preliminary Drainage Strategy Plan

and Calculations

c
e
p

-5m 0 5 10 15 20m

Design Settings

Rainfall Methodology	FEH-22	Minimum Velocity (m/s)	1.00
Return Period (years)	2	Connection Type	Level Soffits
Additional Flow (%)	0	Minimum Backdrop Height (m)	0.200
CV	1.000	Preferred Cover Depth (m)	1.200
Time of Entry (mins)	5.00	Include Intermediate Ground	✓
Maximum Time of Concentration (mins)	30.00	Enforce best practice design rules	✓
Maximum Rainfall (mm/hr)	150.0		

Nodes

	Name	Area (ha)	Cover Level (m)	Diameter (mm)	Depth (m)	Invert Level (m)
	Storage Crates	0.388	127.000	1200	1.000	126.000

Simulation Settings

Rainfall Methodology	FEH-22	Analysis Speed	Normal	Starting Level (m)
Rainfall Events	Singular	Skip Steady State	x	Check Discharge Rate(s) x
Summer CV	1.000	Drain Down Time (mins)	1440	Check Discharge Volume x
Winter CV	1.000	Additional Storage (m³/ha)	0.0	

Storm Durations

15	60	180	360	600	960	2160	4320	7200	10080
30	120	240	480	720	1440	2880	5760	8640	

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
2	0	0	0
10	0	0	0
30	0	0	0
100	0	0	0
100	45	0	0

Node Storage Crates Online Hydro-Brake® Control

Flap Valve	x	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	x	Sump Available	✓
Invert Level (m)	126.000	Product Number	CTL-SHE-0081-2300-0400-2300
Design Depth (m)	0.400	Min Outlet Diameter (m)	0.100
Design Flow (l/s)	2.3	Min Node Diameter (mm)	1200

Node Storage Crates Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	126.000
Side Inf Coefficient (m/hr)	0.00000	Porosity	0.95	Time to half empty (mins)	
Depth (m)	Area (m²)	Inf Area (m²)	Depth (m)	Area (m²)	Inf Area (m²)
0.000	1140.0	1140.0	0.400	1140.0	1187.9

Results for 2 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m ³)	Flood (m ³)	Status
1440 minute summer	Storage Crates	930	126.090	0.090	7.0	97.5518	0.0000	OK
Link Event (Outflow)	US Node	Link	Outflow (l/s)	Discharge Vol (m ³)				
1440 minute summer	Storage Crates	Hydro-Brake®	2.1	139.6				

<p>The Civil Engineering Practice 11 Tungsten Building BN41 1RA www.civil.co.uk</p>	<p>File: Storage Crates.pfd Network: Storm Network Steve Doughty 26/11/2025</p>	<p>Page 3 24025 Land South of Burleigh Lane Storage Crates</p>
---	---	--

Results for 10 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m ³)	Flood (m ³)	Status
960 minute summer	Storage Crates	705	126.141	0.141	14.6	153.2999	0.0000	OK
Link Event (Outflow)	US Node	Link	Outflow (l/s)	Discharge Vol (m ³)				
360 minute winter	Storage Crates	Hydro-Brake®	2.3	143.2				

Results for 30 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
960 minute summer	Storage Crates	765	126.183	0.183	18.1	197.8770	0.0000	OK
Link Event (Outflow)	US Node	Link	Outflow (l/s)	Discharge Vol (m³)				
180 minute summer	Storage Crates	Hydro-Brake®	2.3	147.6				

<p>The Civil Engineering Practice 11 Tungsten Building BN41 1RA www.civil.co.uk</p>	<p>File: Storage Crates.pfd Network: Storm Network Steve Doughty 26/11/2025</p>	<p>Page 5 24025 Land South of Burleigh Lane Storage Crates</p>
---	---	--

Results for 100 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m ³)	Flood (m ³)	Status
1440 minute summer	Storage Crates	1140	126.250	0.250	16.9	270.7561	0.0000	OK
Link Event (Outflow)	US Node	Link	Outflow (l/s)	Discharge Vol (m ³)				
60 minute summer	Storage Crates	Hydro-Brake®	2.3	139.7				

<p>The Civil Engineering Practice 11 Tungsten Building BN41 1RA www.civil.co.uk</p>	<p>File: Storage Crates.pfd Network: Storm Network Steve Doughty 26/11/2025</p>	<p>Page 6 24025 Land South of Burleigh Lane Storage Crates</p>
---	---	--

Results for 100 year +45% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m ³)	Flood (m ³)	Status
2160 minute summer	Storage Crates	1740	126.397	0.397	17.7	430.1935	0.0000	OK
Link Event (Outflow)	US Node	Link	Outflow (l/s)	Discharge Vol (m ³)				
60 minute summer	Storage Crates	Hydro-Brake®	2.3	189.8				

Appendix 8

Interim Drainage Management

and Maintenance Plan

Interim Drainage Management and Maintenance Plan

Project	Land South of Burleigh Lane, Crawley Down
Project Number	24025

The Civil Engineering Practice
11 Tungsten Building
George Street
Fishersgate
Sussex
BN41 1RA

01273 424424
reception@civil.co.uk
www.civil.co.uk

By Steve Doughty

Date 26 Nov 2025

1 Introduction

- 1.1 This Interim Drainage Management and Maintenance Plan has been prepared as the initial draft of the document that will become the Drainage Maintenance and Management Manual.
- 1.2 The Drainage Management and Maintenance Manual will be completed as part of the Operation and Maintenance Manual to be provided by the Principal Contractor on completion of construction.
- 1.3 The Drainage Management and Maintenance Manual will be handed over to a Management Company appointed by the Developer on behalf of the Residents on project completion.
- 1.4 The Drainage Management and Maintenance Manual will remain a live document and will be used to guide and record the management and maintenance of the surface water and foul drainage systems.
- 1.5 In the event that the Management Company becomes unable to discharge its duties within two years of first appointment the Developer will endeavour to appoint an alternative on behalf of the Residents.

2 During Construction

- 2.1 Once appointed the Contractor will prepare a site specific method statement for the control of silt and other pollutants during construction. CIRIA Report C532, Control of water pollution from construction sites, provides further guidance on this.
- 2.2 The Contractor will maintain the proposed drainage system during construction and until the handing over of the site.

3 Surface Water Drainage System

3.1 Overview

- 3.1.1 The surface water drainage system has been designed as a Sustainable Urban Drainage System (SuDS)
- 3.1.2 The system has been designed to collect surface water from the roofs and discharge it via storage crates to the watercourse at the northern site boundary.
- 3.1.3 Driveways and parking areas have been designed as permeable paving.

3.2 How the System will Function

- 3.2.1 Surface water falling on the roofs will be collected in gutters and discharged via rainwater pipes and below ground drainage pipes to the storage crates.
- 3.2.2 Catchpits within the below ground pipe work system will trap silt and debris and provide a point of access for maintenance.
- 3.2.3 The driveways, parking areas and highways have been designed as permeable paving systems which will provide water quality treatment prior to discharging to the crates.

4 Foul Water Drainage System

- 4.1 Foul water will be discharged to an onsite pumping station via conventional pipework laid at self cleansing velocity and will require minimal maintenance.
- 4.2 The pumping station will discharge foul water to the existing public foul sewer located beneath Sandhill Lane to the west of the site.
- 4.3 The foul pumping station will be maintained in accordance with the manufacturer's requirements.
- 4.4 Alternatively foul water could be collected into individual cess pits within each curtilage and tankered away on a monthly basis.

5 Schedule of Maintenance

- 5.1 Management of shared drainage facilities (where not adopted by a Statutory Undertaker) will be passed on to a Management Company.
- 5.2 Maintenance of individual property drainage connections is the responsibility of the individual property owners.
- 5.3 There are three categories of maintenance activities:

- **Regular maintenance**

Basic tasks undertaken on a frequent and predictable schedule, including vegetation management, litter and debris removal, and inspections.

- **Occasional maintenance**

Tasks that are likely to be required periodically, but on a much less frequent and predictable basis than the routine tasks (sediment removal is an example).

- **Remedial maintenance**

Intermittent tasks that may be required to rectify faults associated with the system.

Where remedial work is found to be necessary, it is likely to be due to site-specific characteristics or unforeseen events, and as such timings are difficult to predict.

5.4 The following maintenance schedule details the typical tasks to be undertaken at different intervals.

Maintenance Schedule	Required Action	Frequency
Regular Maintenance	Manage vegetation and remove nuisance plants - aesthetics	As required
	Litter and debris removal - catchpits	Monthly or as required
	Maintain / mow swales to ensure vegetation height remains at between 100mm and 150mm	3 Monthly or as required
	Cleaning of gutters and any filters on downpipes	3 Monthly
Occasional Maintenance	Remove sediment and debris from silt trap chambers, channel drains and inlet chambers	6 monthly
	Visual inspection of permeable paving for defects and settlement	Annually
	Sweeping / brushing of permeable paving	Every 2 years
	Surface and foul water pipework - jetting / rodding	Every 2 years or as required
Remedial Maintenance	Remove debris / blockages to silt traps / channel drains / headwalls	As required
	Repairs to access chambers / manhole covers	As required
	Replace any broken permeable blocks / surface, remedial works to any depressions or rutting	As required
	Inspect inlet, outlet from downpipes, channel drains, swales, headwalls and gullies for blockages, standing water and clear	As required
Monitoring	Inspect silt traps and note the rate sediment has accumulated	Monthly in the first year and then annually

Indicative Schedule of Maintenance for the Proposed Drainage System

Component	Inspection Frequency						
	1 Month	3 Months	6 Months	1 Year	After leaf fall in Autumn	2 Years	When alarm indicates
Gullies, Channels and Gutters			✓		✓		
Catchpits	✓				✓		
Surface and Foul Water Pipework						✓	
Permeable Paving				✓			
Swales		✓					
Flow Controls			✓				
Foul Pumping Station				✓			✓
Existing Watercourses	✓						

Inspection Frequency Summary

6 Maintenance Procedures

6.1 It is recommended that the Management Company employ a suitably qualified company to undertake the maintenance works for all shared drainage.

6.2 The following procedures provide a guide to the two most common maintenance items, jetting and silt removal, to be undertaken on site:

6.3 Jetting

6.3.1 Equipment Required:

- High-pressure water jetting equipment.
- Personal protective equipment (PPE) for operators.

6.3.2 Typical Procedure:

- Perform a pre-jetting inspection to assess the level of sedimentation.
- Insert the jetting hose into the pipe, starting from the upstream end.
- Gradually move the jetting hose downstream, ensuring the entire pipe or structure length is cleaned.
- Monitor the process to avoid any damage to the drainage infrastructure.
- Collect dislodged silt and debris at the downstream end using a vacuum or manual removal.

6.4 Silt Removal and Disposal

6.4.1 Equipment Required:

- Vacuum truck or manual removal tools.
- Containers for temporary storage of silt and debris.

6.4.2 Typical Procedure:

- Collect the dislodged silt and debris from the downstream end of pipe or structure.
- Transfer the collected material to the containers.
- Dispose of the collected silt and debris following local regulations and environmental guidelines.

7 Financing

7.1 The regular and corrective maintenance of all shared elements of the drainage system will be managed and funded through the Management Company on behalf of the Residents.

7.2 Maintenance of individual property drainage infrastructure will be funded by the individual property owners.

8 Health and Safety

8.1 Designers Residual Risks

8.1.1 There are no significant residual risks associated with the construction of the proposed surface or foul water drainage network or permeable paving system beyond common site risks that would reasonably be anticipated by a competent Civil Engineering Contractor.

8.2 Construction Phase

8.2.1 The Principal Contractor will undertake a construction phase Health and Safety Plan for the site.

8.2.2 Prior to handover the Principal Contractor will undertake a review of maintenance activities required and prepare suitable Health and Safety documentation as part of the site hand over documents.

9 Design Life

- 9.1 The design life of the development is likely to exceed the design life of the components within the SuDS network. During the routine drainage inspections it may be determined that some components have reached the end of their functional life cycle.
- 9.2 Where possible repairs should be the first option considered however if repairs are unviable it will be necessary for the property owner / Management Company to arrange for the replacement of the faulty component.

10 Emergency Plan

10.1 Potential flood and maintenance indicators:

- Manholes or inspections chambers overflowing
- Gullies overflowing or ponding
- Channel drains overflowing or ponding
- Other visual indicators of the drainage system not performing as it should

10.2 Should any of the items above occur then immediate action as outlined below should be undertaken:

- Inspect for blockages in the problem area
- Should the problem not be identified via an initial inspection:
 - For unadopted onsite drainage the Management Company should appoint a suitable drainage engineer to inspect and survey the system and jet any blockages
 - For adopted onsite drainage the relevant statutory undertaker should be alerted
 - Where it is suspected that there is a problem with the downstream drainage network the Owner or relevant statutory undertaker of that system should be alerted

10.3 Emergency Contact Details

10.3.1 Management Company TBC

10.3.2 Maintenance Team TBC

Appendix 9
Surface Water Exceedance Route Plan

cep

