
Technical Note

Project Name : Willowbrook, Hassocks
Job No. : C2394
Note Title : Surface and Foul Water Drainage Technical Note
Author : MR
Approved : CS
Date : November 2022

Revision	Date of Issue	Comments	Prepared By	Checked By
P	01.12.2022	Initial Issue	MR	CS

1 Introduction

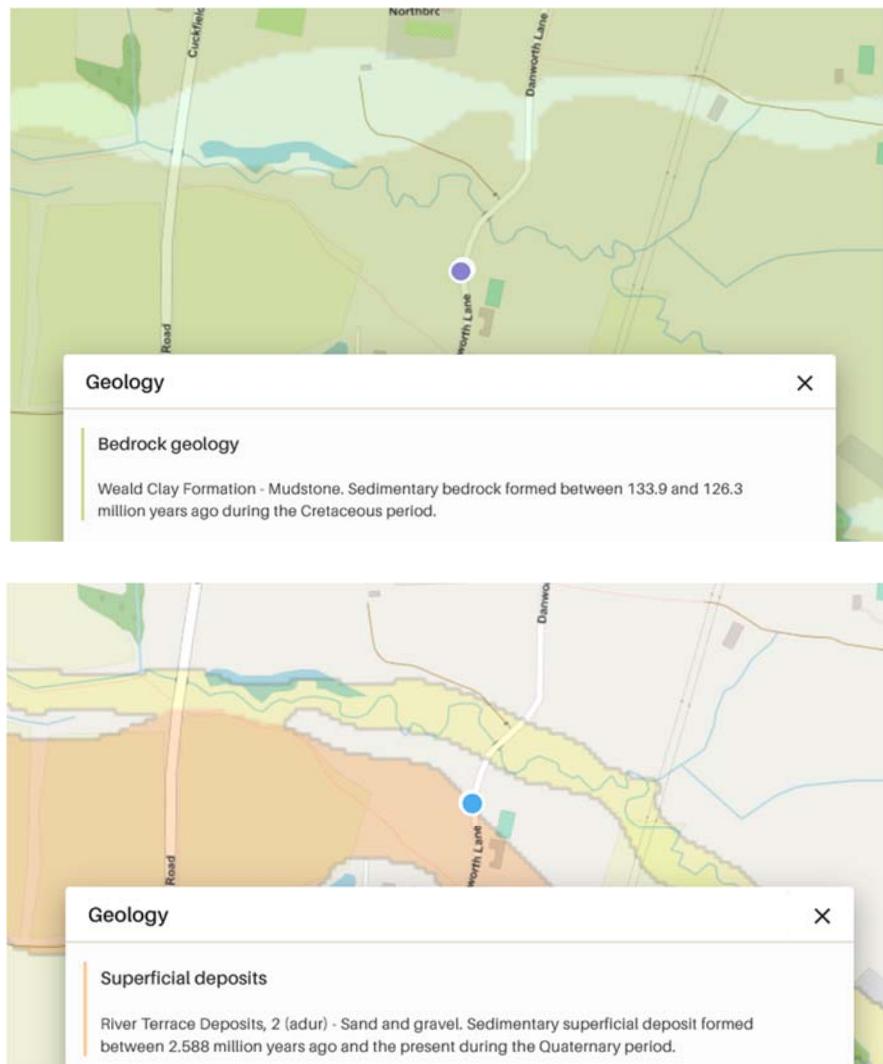
- 1.1.1 CGS Civils Ltd have been appointed by Mr & Mrs Ockenden to undertake a drainage strategy report for a proposed development at Willowbrook, Danworth Lane, Hurstpierpoint, Hassocks.
- 1.1.2 The purpose of this drainage strategy is to demonstrate how the development area can be satisfactorily drained without increasing flood risk onsite and elsewhere.
- 1.1.3 The existing site consists agricultural farm land with existing barn that is proposed to be converted into a new 1 bedroom house.
- 1.1.4 The proposed development is located as OS Grid Reference **TQ 28542 18303** and has the post code **BN6 9LW**.
- 1.1.5 The red green line boundary is approximately 0.2555 Ha and the proposed development will result in a total of 0.0038 Ha of impermeable area which is roof area and 0.0115 Ha of existing roof areas are excluded from drainage calculations.
- 1.1.6 The proposed site will make use of an existing access located to the East by Danworth Lane.
- 1.1.7 The proposed site plan can be found in **Appendix A**.

Fig 1. Site Location

Snippet from MagicMaps – Outline of site <https://magic.defra.gov.uk/magicmap.aspx>

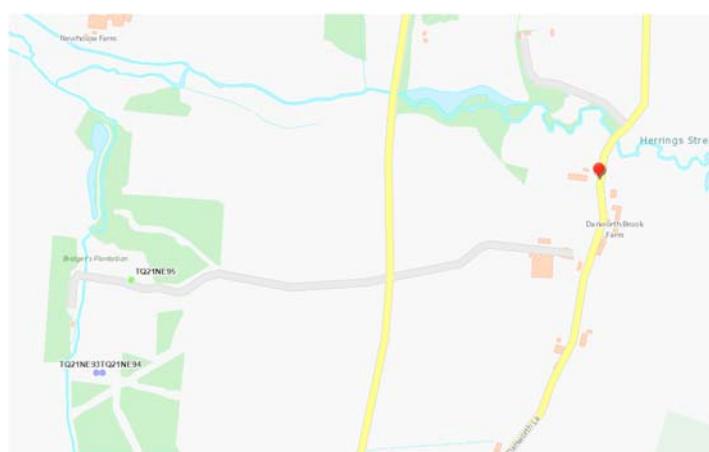
2 Site Geology

2.1 British Geological Survey information


2.1.1 The British Geological Survey confirms the bedrock geology to be made up Weald Clay Formation- Mudstone. The BGS website confirms the superficial deposits on site to be made up of River Terrace Deposits- Sand and gravel.

2.1.2 The British Geological survey also holds records of historical boreholes near the site which give some insight into the ground geology.

- Borehole TQ21NE95 (Located approx. 1100m West of the site) – Ground geology (Silty Clay, Clay)
- Borehole TQ21NE94 (Located approx. 1200m West of the site) – Ground geology (Silty Clay, Sandy Clay)
- Borehole TQ21NE93 (Located approx. 1250m West of the site) – Ground geology (Clay)


2.1.3 Due to the proposed development site being located within the area underlain by silty Clay soils with a low permeability characteristic, infiltration method for surface water discharge has been ruled out.

2.1.4 The BGS Historical Borehole Logs can be found in **Appendix B**.

Fig 2. British Geological Survey

Snippet from BGS Website showing Bedrock geology/superficial deposits <http://mapapps.bgs.ac.uk/geologyofbritain/home.html?>

Fig 3. British Geological Survey

Snippet from BGS Website showing Historical Borehole Logs Locations

2.2 Geological Assessment

2.2.1 No intrusive ground investigation testing has been carried out and therefore based on the available BGS historical borehole logs and Desktop Study it is proposed that following surface water runoff discharge hierarchy a restricted discharge to existing watercourse is proposed.

2.2.2 An onsite infiltration test to BRE365 method has been carried out as a part of the drainage strategy scope. Unfortunately, due to the site being located within the area underlain by Clay soils, infiltration test failed confirming surface water discharge via infiltration to be not a viable method at this location.

Fig 4. Infiltration Test – onsite photographs.

2.2.3 The nearest borehole logs indicate that site is underlain by Clay soils with a poor potential for infiltration.

2.3 Hydrogeology Setting

2.3.1 The Environment Agency (EA) mapping service, as provided by Magic Map, indicates the aquifer designation for the bedrock and superficial drift geology and the groundwater vulnerability in the area. The mapping, as included in **Appendix C**, provides the following information for the site:

2.3.2 The site will not pose a risk to the groundwater on site as there will be no discharge of any hazardous materials to ground.

Geology Map	Site Description
Aquifer Designation (Bedrock)	Unproductive
Aquifer Designation (Superficial Drift)	Secondary A
Groundwater Vulnerability	Low
Groundwater Source Protection Zone	N/A

3 Existing Drainage

3.1.1 It is not currently known how existing site discharges surface water runoff, however it is presumed that all surface water runoff is discharged onto the ground and partially into the ground via infiltration and into the existing watercourse via overland flow.

4 Proposed Drainage Strategy

4.1 SuDS Hierarchy

4.1.1 All options for the destination of run-off generated on site have been assessed in line with the SuDS hierarchy as set out in Building Regulations Part H document and DEFRA's Draft National Standards for SuDS.

Discharge Destination	
Discharge to Ground	N/A (Confirmed not possible due to the low Permeability)
Discharge to Watercourse	Yes (Storm water at restriction rate of 1l/s and foul water via treatment plant)
Discharge to Surface Water Sewer	N/A
Discharge to Other Sewer	N/A

4.2 Surface Water Drainage

4.2.1 Based upon the information gathered from the British Geological Survey website and soakaway test, it is deemed that discharge to ground via infiltration is not viable therefore, it is proposed that all surface water runoff is to be discharged to the existing ditch located to the east of the site at a restricted discharge rate of **1.0l/s**. All roof areas are to be collected into a positive drainage network being discharged into the existing ditch via a new manhole. The network has been designed to cater for the 1 in 100 – year +40% storm.

4.2.2 Proposed Drainage Strategy and Hydraulic calculations can be found in **Appendix D**.

4.3 Water Quality

4.3.1 A key requirement of any SuDS system is that it protects the receiving water body from the risk of pollution.

4.3.2 Frequent and short duration rainfall events are those that are most loaded with potential contaminants (silts, fines, heavy metals, and various organic and inorganic contaminants) Therefore the first 5-10mm of rainfall should be adequately treated with SuDS.

4.3.3 The new SuDS Manual (Ciria C753, November 2015) introduces slightly different approach compared to the previous version for the water quality management of surface water. The Manual describes risks posed by the surface water runoff to the receiving environment as a function of:

- The pollution hazard at a particular site (i.e., the pollution source)
- The effectiveness of SuDS treatment components in reducing levels of pollutants to environmentally acceptable levels
- The sensitivity of the receiving environment

4.3.4 The EA website indicates that the site does not lie within a Source Protection Zone.

4.3.5 The recommended approaches for water quality risk management are given in the SuDS Manual Table 26.1.

Fig 5. Approaches to Water Quality Risk Management

Table 26.1 Approaches to Water Quality Risk Management			
Design method	Hazard Characterisation	Risk Reduction	
		For Surface Water	For Groundwater
Simple Index Approach	Simple pollution hazard indices based on land use (Table 26.2)	Simple SuDS hazard mitigation indices (Table 26.3)	Simple SuDS hazard mitigation indices (Table 26.4)
Risk Screening	Factors characterising traffic density and extent of infiltration likely to occur (Table 26.5)	N/A	Factors characterising unsaturated soil depth and type, and predominant flow type through the soils (Table 26.5)
Detailed Risk Assessment	Site specific information used to define likely pollutants and their significance	More detailed, component specific performance information used to demonstrate that the proposed SuDS components reduce the hazard to acceptable levels	
Process-based treatment modelling	Time series rainfall used with generic pollution characteristics to determine statistical distributions of likely concentrations and loadings in the runoff	Models that represent the treatment processes in the proposed SuDS components give estimates of reductions in even mean discharge concentrations and total annual load reductions delivered by the system	

4.3.6 As per Table 26.1 Simple Index approach will be used as a design method for this site.

4.3.7 Table 26.2 will provide hazard classification of different land uses. The land uses for the surface water drainage for this site are.

- Residential Roofs
- Individual Property driveways and residential car parks
- Low traffic roads

4.3.8 To deliver adequate treatment, the selected SuDS components should have a total pollution mitigation index for each contaminant type that equals or exceeds the pollution hazard index for each contaminant type. Therefore, the following must be achieved for the surface running off the site.

Total SuDS mitigation index >= pollution hazard index

4.3.9 Pollution Hazard Indices are given for different land uses in Table 26.2 of the SuDS manual;

Fig 6. Pollution Hazard Indices for Different Land Use Classifications

Table 26.2 Pollution hazard indices for different land use classifications				
Land Use	Pollution Hazard Level	Total Suspended solids (TSS)	Metals	Hydro-Carbons
Residential roofs	Very Low	0.2	0.2	0.05
Other roofs (Typically commercial/industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (e.g., cul-de-sacs, homezones and general	Low	0.5	0.4	0.4

access roads) and non-residential car parking with infrequent change (e.g., schools, offices) i.e., < 300 traffic movements/day				
Commercial yard and delivery areas, non-residential car parking with frequent change (e.g., hospitals, retail), all roads except low traffic roads and trunk roads/motorways	Medium	0.7	0.6	0.7
Sites with heavy pollution (e.g., haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways	High	0.8	0.8	0.9

4.3.10 From Table 26.2 the following information is tabulated in Table 1

Table 1: Pollution hazard index and destination of runoff for the proposed site

Table 1: Pollution Hazard Index and Destination of runoff for the proposed Site					
Land Use	Destination of Runoff	Pollution Hazard Level	Total Suspended Solids	Metals	Hydrocarbons
Residential Roof	Surface Water	Very Low	0.2	0.2	0.05
Existing driveways	Ground water	Low	0.5	0.4	0.4

4.3.11 The SuDS mitigation index will be obtained from Table 26.4 (for groundwater) of the SuDS manual.

Figure 7 Indicative SuDS Mitigation Indices for discharges to ground waters.

4.3.12 SuDS mitigation index are tabulated in Table 5 as followed.

Table 26.4 Indicative SuDS mitigation indices for discharges to groundwater

Characteristics of the material overlying the proposed infiltration surface, through which the runoff percolates	TSS	Metals	Hydrocarbons
A layer of dense vegetation underlain by a soil with good containment attenuation potential of at least 300mm in depth	0.6	0.5	0.6
A soil with good contaminant attenuation potential of at least 300mm in depth	0.4	0.3	0.3
Infiltration trench (where a suitable depth of filtration material is included that provides treatment, i.e., graded gravel with sufficient smaller particles but not single size coarse aggregate such as 20mm gravel) underlain by a soil with good contaminant attenuation potential of at least 300mm in depth.	0.4	0.4	0.4
Constructed permeable pavement (where a suitable filtration layer is included that provides treatment, and including a geotextile at the base separating the foundation from the subgrade) underlain by a soil with good contaminant attenuation potential of at least 300mm in depth	0.7	0.6	0.7
Bioretention underlain by a soil with good contaminant attenuation potential of at least 300mm in depth	0.8	0.8	0.8
Proprietary treatment systems	These must demonstrate that they can address each of the contaminant types to acceptable levels for inflow concentrations relevant to the contributing drainage area		

Table 26.4 Indicative SuDS mitigation indices for discharges to surface waters

Type of SuDS Components	Mitigation Indices		
	TSS	Metals	Hydrocarbons
Filter Strip	0.4	0.4	0.5
Filter Drain	0.4	0.4	0.4
Swale	0.5	0.6	0.6
Bioretention System	0.8	0.8	0.8
Permeable Pavement	0.7	0.6	0.7
Detention Basin	0.5	0.5	0.6
Pond	0.7	0.7	0.5
Wetland	0.8	0.8	0.8
Proprietary treatment systems	These must demonstrate that they can address each of the contaminant types to acceptable levels for inflow concentrations relevant to the contributing drainage area		

Table 2: SuDS mitigation index

Runoff Source	Destination of Runoff	Mitigation Index Source	Mitigation Indices			
			Type of SuDS Component	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Individual driveways, residential car parks and low traffic roads	Ground water	Table 26.4 (for ground waters) Table 26.3 (for surface waters)	Permeable Pavement	0.7	0.6	0.7

4.3.13 The above analysis demonstrates that the SuDS devices within the design will mitigate any pollution present within the surface water system.

4.4 Foul water drainage

4.4.1 The proposed development is located within the area not being served by public sewers. It is therefore, proposed that foul sewer runoff is discharged into the onsite package treatment plant prior being discharged into the existing watercourse located to the east of the site.

4.4.2 The total number of persons saved by the proposed treatment plant has been assumed as 2, the treated effluent discharge is less than <2m3 and therefore EA application will not be required.

5 Maintenance

5.1 Introduction

5.1.1 During construction, the Contractor will be responsible for maintaining the drainage and SuDS (Sustainable Drainage Systems). Upon handover, the occupier will take on the responsibility of these duties as laid out in this report.

5.2 General Drainage Maintenance Specification

5.2.1 Inlet Structures and Inspection Chambers

- Inlet structures such as rainwater downpipes, road gullies and channel drains should be free from obstruction at all times to all free flow through the SuDS
- Inspection Chambers and Rodding Eyes are used on bends or where pipes come together. They allow access and cleaning to the system if necessary.

Inlet Structures and Inspection Chambers	
Regular Maintenance	Frequency
Inlet Structures Inspect rainwater downpipes, channel drains and road gullies, removing obstructions and silt as necessary. Check that there is no physical damage. Strim vegetation 1m min surround to structures and keep area free from silt and debris	Monthly
Inspections Chambers and below ground control chambers. Remove cover and inspect, ensuring that the water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt.	Annually
Undertake inspection after leaf fall in Autumn	
Occasional Maintenance Check topsoil levels are 20mm above edges of chambers to avoid mower damage.	As necessary
Remedial Work Repair physical damage if necessary	As required

5.2.2 Below ground drainage pipes

- Below ground drainage pipes convey water to the SuDS system. They should always be free from obstruction to allow free flow.

Below Ground Drainage Pipes	
Regular Maintenance	Frequency
Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for 3 months then annually
Remove debris from the catchment surface (where it may cause risks to performance)	Monthly
Remove sediment from pre-treatment inlet structures and inspection chambers.	Annually or as required
Maintain vegetation to designed limits within the vicinity of below ground drainage pipes and tanks.	Monthly or as required
Remedial Work	
Repair physical damage if necessary	As required
Monitoring	
Inspect all inlets, outlets and vents to ensure that they are in good conditions and operating as designed.	Annually
Survey inside of pipe runs for sediment build up and remove if necessary.	Every 5 years or as required

6 Summary and Conclusions

- 6.1.1 CGS Civils has been instructed of by to produce a Drainage statement under National Planning Policy Framework (NPPF) to support the Planning Application of an existing barn conversion into a 1 bedroom dwelling.
- 6.1.2 The Surface Water will be discharged into the existing watercourse to the east part of the site at a restricted rate of 1l/s.
- 6.1.3 The Foul water will discharge into the onsite treatment plant with the treated effluent being discharged into the watercourse.
- 6.1.4 This report has demonstrated that the proposed drainage measures ensure that suitable means of surface water and foul drainage can be achieved for the proposed development.

7 Appendices

7.1 Appendix A – Site Plan

THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ANY OTHER RELEVANT DRAWINGS AND THE CONSTRUCTION MANUAL. THE BUILDER SHOULD CHECK ALL LEVELS AND SITE DIMENSIONS BEFORE WORK STARTS AND NOTIFY SCANDIA OF ANY DISCREPANCY. IF IN DOUBT, PLEASE ASK.

© COPYRIGHT IN THIS DRAWING AND WORK EXECUTED IS AND REMAINS THE PROPERTY OF SCANDIA-HUS LIMITED AND OR ITS SUBSIDIARIES IN ACCORDANCE WITH THE PROVISIONS OF THE COPYRIGHT ACT. PERMISSION TO PRODUCE COPIES OR MODIFIED DRAWINGS IN WHOLE OR IN PART FOR ANY PURPOSE SHOULD BE OBTAINED FROM SCANDIA-HUS LIMITED & ANY SUCH REPRODUCTIONS SHOULD INCLUDE THIS & THE FOREGOING STATEMENT

scandiahus
SCANDIA-HUS BUSINESS PARK,
FELCOURT ROAD, FELCOURT, EAST GRINSTEAD,
WEST SUSSEX, RH16 8LD. TEL: 01736 877666

WEST SUSSEX, RH19 2LP : TEL 01342 838060
FOR
MR & MRS COOKENDEN

MR. & MRS. OCKENDEN
SITE
Willow Brook, Danworth Lane,
Hurstpierpoint, BN6 9LW

TITLE

PROPOSED BLOCK PLAN

C/No. 233221	O/No.	SCALE 1:500 @A2
DRAWN FC	DRAWING NUMBER BP02	
DATE 10/22	REV	

7.2 **Appendix B – BGS Historical Borehole Logs**

Contract: Hurstpierpoint WTW
Client: Southern Projects Limited

Borehole No. 1

Sheet No. 1 Of 1.
Depth 0 to 10 metres.Equipment and Methods
Light Cable Percussion Boring
150mm Diameter
British Geological SurveyGround Level : m.O.D.
Coordinates Survey :Job Number : S90/801
2779
Location British Geological Survey
1808
Dates : 28/3/90

Orientation : Vertical

Daily Prog.	Water Levels	Remarks	In Situ Tests	Samples Taken	Depth (Thick)	Reduced Level	Description	Legend
					0.00		MADE GROUND (firm orange brown blue grey clay with occasional brick rubble)	
			J U	0632 0633 0634	(0.60) 0.60		Very stiff fissured orange brown silty CLAY with lenses of fine orange sand and occasional pyritised wood	
British Geological Survey	28/3		J U	0635 0636 0637 0638 0639			British Geological Survey	
			J U	0640 0641 0642 0643 0644			British Geological Survey	
British Geological Survey	28/3		J U	0645 0646 0647 0648 0649	(4.85)		British Geological Survey	
			J U	0650 0651 0652 0653 0654			British Geological Survey	
British Geological Survey	29/3		J U	0655 0656 0657 0658 0659	5.45		British Geological Survey	
			J U	0660 0661 0662 0663 0664			British Geological Survey	
British Geological Survey			J U	0665 0666 0667 0668 0669	(4.55)		British Geological Survey	
			J U	0670 0671 0672 0673 0674			British Geological Survey	
			J U	0675 0676 0677 0678 0679			British Geological Survey	
			J U	0680	10.00		British Geological Survey	
Operator JC		General Remarks: Water level observation tube installed to 10.0m.					Appendix 1	
Scale 10m/sheet							Sheet No. 1	

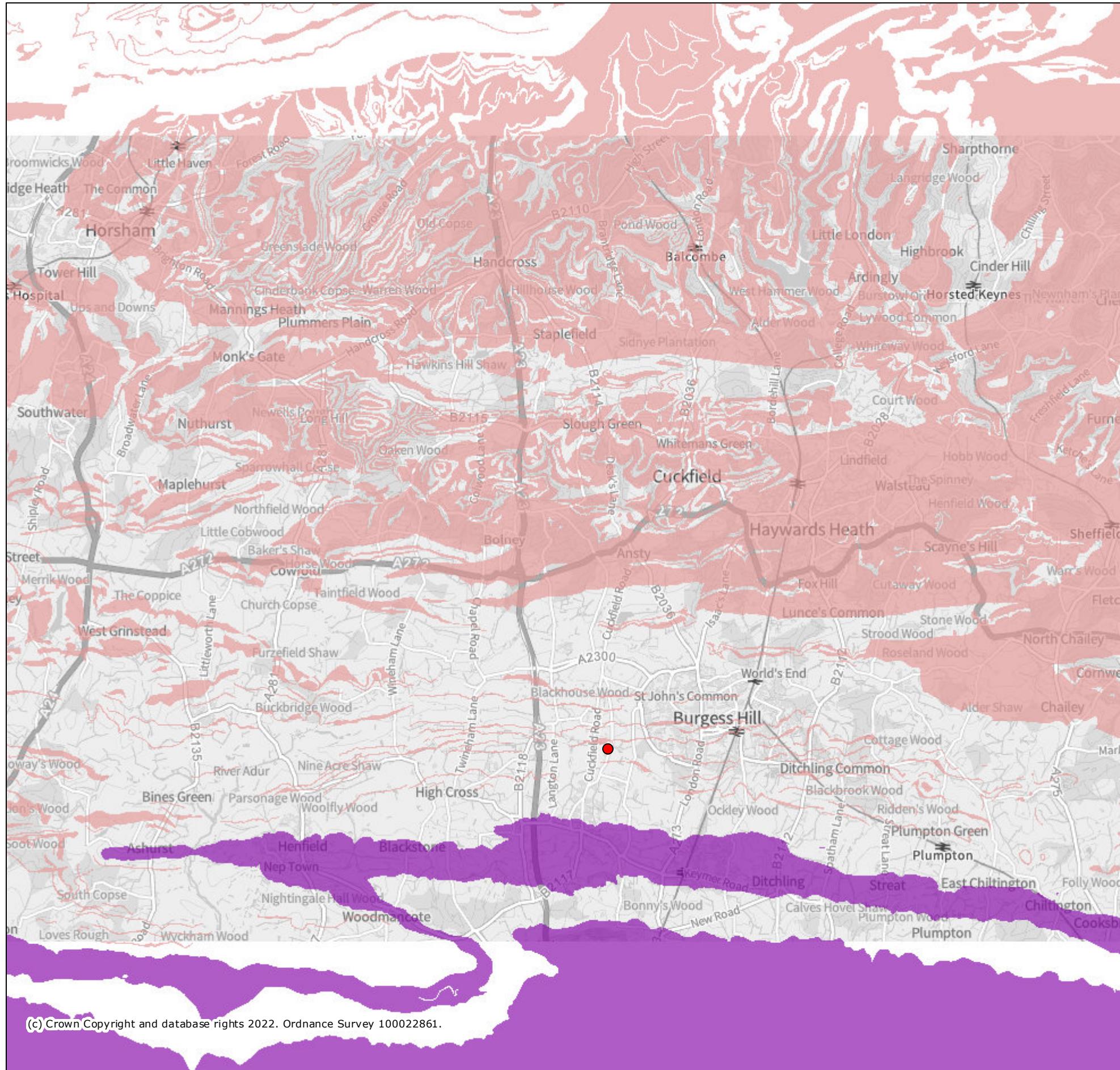
[<<](#) [< Prev](#) Page 1 of 3 [Next >](#) [>>](#)

<p>Contract: Hurstpierpoint WTW Client: Southern Projects Limited</p> <p>Equipment and Methods Light Cable Percussion Boring 150mm Diameter</p> <p>Orientation : Vertical</p>					<p>Borehole No. 2 Sheet No. 1 of 1. Depth 0 to 10 metres.</p>
<p>Ground Level : m.O.D.</p> <p>Coordinates Survey:</p>			<p>Job Number : S90/801</p> <p>Location 2778 1808</p> <p>Dates : 29/3/90</p>		
<p>British Geological Survey</p>			<p>British Geological Survey</p>		
Daily Prog.	Water Levels	Remarks	In Situ Tests	Samples Taken	Depth (Thickness)
					Reduced Level
					0.00
			J 0682		
			J 0683		
			U 0684		
			J 0685		
			J 0686		
			J 0687		
			J 0688		(3.00)
			U 0689		
			J 0690		
			J 0691		
			J 0692		
			J 0693		
			U 0694		
			J 0695		3.00
			J 0696		3.20
			J 0697		
			J 0698		
			U 0699		
			J 0700		
			J 1		
			U 2		
			U 3		
			J 4		(3.10)
			J 5		
			J 6		
			J 7		
			U 8		
			J 9		
			J 10		
			J 11		
			J 12		
			U 13		6.30
			J 14		
			J 15		
			J 16		
			J 17		
			U 18		
			J 19		
			J 20		
			J 21		
			J 22		
			U 23		
			J 24		
			J 25		
			J 26		
			J 27		
			U 28		
			J 29		10.00
<p>End of Borehole</p>					
British Geological Survey	British Geological Survey	British Geological Survey	British Geological Survey	British Geological Survey	British Geological Survey
General Remarks: Piezometer installed to 5.4m.					Appendix 1
Operator JC					Sheet No. 2
Scale 10m/sheet					

Contract: Hurstpierpoint II
Client: Southern Water Projects Limited

Borehole No. 1

Sheet No. 1 Of 2.
Depth 0 to 10 metres.Equipment and Methods
Light Cable Percussion Boring
150mm diameter
British Geological SurveyGround Level : m.O.D.
Coordinates:Job Number : S91/087
Location 2784
1824
Dates : 11/2/91
12/2/91

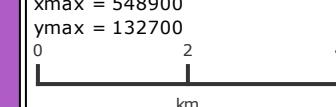

Orientation : Vertical

Daily Prog.	Water Levels	Remarks	In Situ Tests	Samples Taken	Depth (Thick)	Reduced Level	Description	Legend
					0.00			
				J 3401			Soft to firm brown mottled grey subhorizontally fissured silty CLAY with occasional angular to subrounded medium gravel and manganese staining at the top.	x—x—
				J 3402				———
				U 3403				—x—
				J 3404				——0
				J 3405		(3.60)		x—x—
				J 3406				—x—
				U 3407				—x—
				J 3408		3.60		—x—
				J 3409			Firm becoming stiff grey subhorizontally fissured silty CLAY	x—x—
				U 3410				———
				J 3411				—x—
				J 3412				—x—
				U 3413				—x—
				J 3414		(4.40)		—x—
				J 3415				—x—
				U 3416				—x—
				J 3417				—x—
				J 3418		8.00		—x—
				U 3419			Very stiff grey closely subhorizontally fissured CLAY and SILT	x—x—x
				J 3420		(6.50)		—x—x—
				J 3421		10.00		—x—x—
							Continued	
British Geological Survey	12/2							
British Geological Survey								
British Geological Survey								
British Geological Survey								
British Geological Survey								
British Geological Survey								
British Geological Survey								
Operator JC	General Remarks:						Appendix	
Scale 10m/sheet							Sheet No.	

Contract: Hurstpierpoint II Client: Southern Water Projects Limited						Borehole No. 1 Sheet No. 2 Of 2. Depth 10 to 20 metres.
Equipment and Methods Light Cable Percussion Boring 150mm diameter British Geological Survey			Ground Level : m.O.D. Coordinates:			
Orientation : Vertical						
Daily Prog.	Water Levels	Remarks	In Situ Tests	Samples Taken	Depth (Thickness)	Reduced Level
12/2				U 3422 J 3423 J 3424 U 3425 J 3426	10.00 (6.50)	
				J 3427 U 3428 J 3429 J 3430 J 3431	14.50 (0.60)	
				U 3432 J 3433 J 3434	15.10	
						Very stiff grey closely subhorizontally fissured CLAY and SILT
						Very stiff/moderately weak grey fissured SILT and CLAY
						----- End of Borehole -----
British Geological Survey						British Geological Survey
British Geological Survey						British Geological Survey
British Geological Survey						British Geological Survey
Operator JC	General Remarks:					Appendix
Scale 10m/sheet						Sheet No.

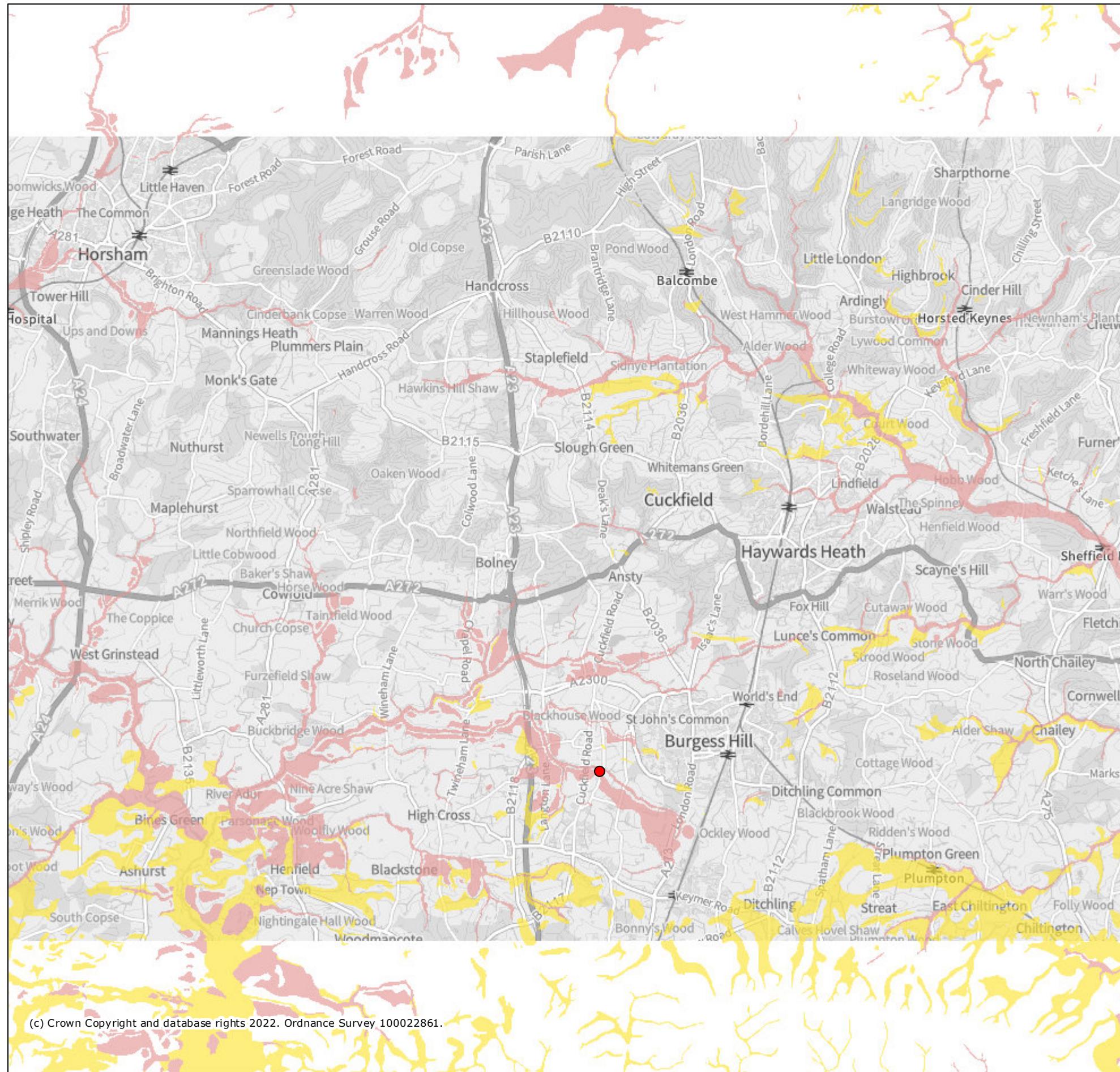
7.3 **Appendix C – Magic Map from Environment Agency**

Aquifer Designation Map (Bedrock)



Legend

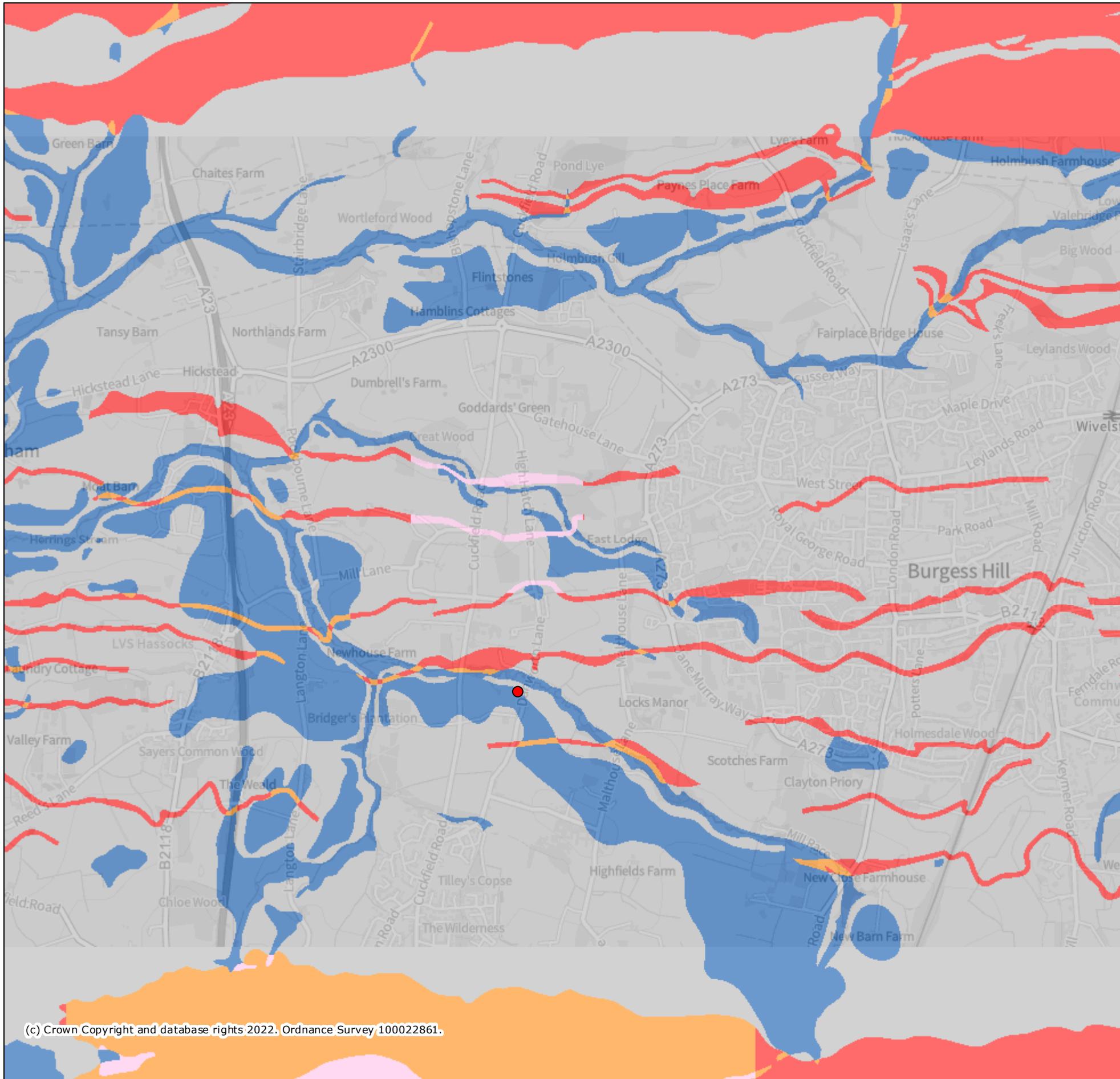
Aquifer Designation Map (Bedrock) (England)


- Principal
- Secondary A
- Secondary B
- Secondary (undifferentiated)
- Unproductive

Projection = OSGB36
 xmin = 506500
 ymin = 113900
 xmax = 548900
 ymax = 132700

Map produced by MAGIC on 31 October, 2022.
 Copyright resides with the data suppliers and the map
 must not be reproduced without their permission. Some information
 in MAGIC is a snapshot of the information that is being maintained or
 continually updated by the originating organisation. Please
 refer to the metadata for details as information may be
 illustrative or representative rather than definitive at this stage.

Aquifer Designation Map (Superficial Drift)


Legend

Aquifer Designation Map (Superficial Drift) (England)

- Principal
- Secondary A
- Secondary B
- Secondary (undifferentiated)
- Unknown (lakes+landslip)
- Unproductive

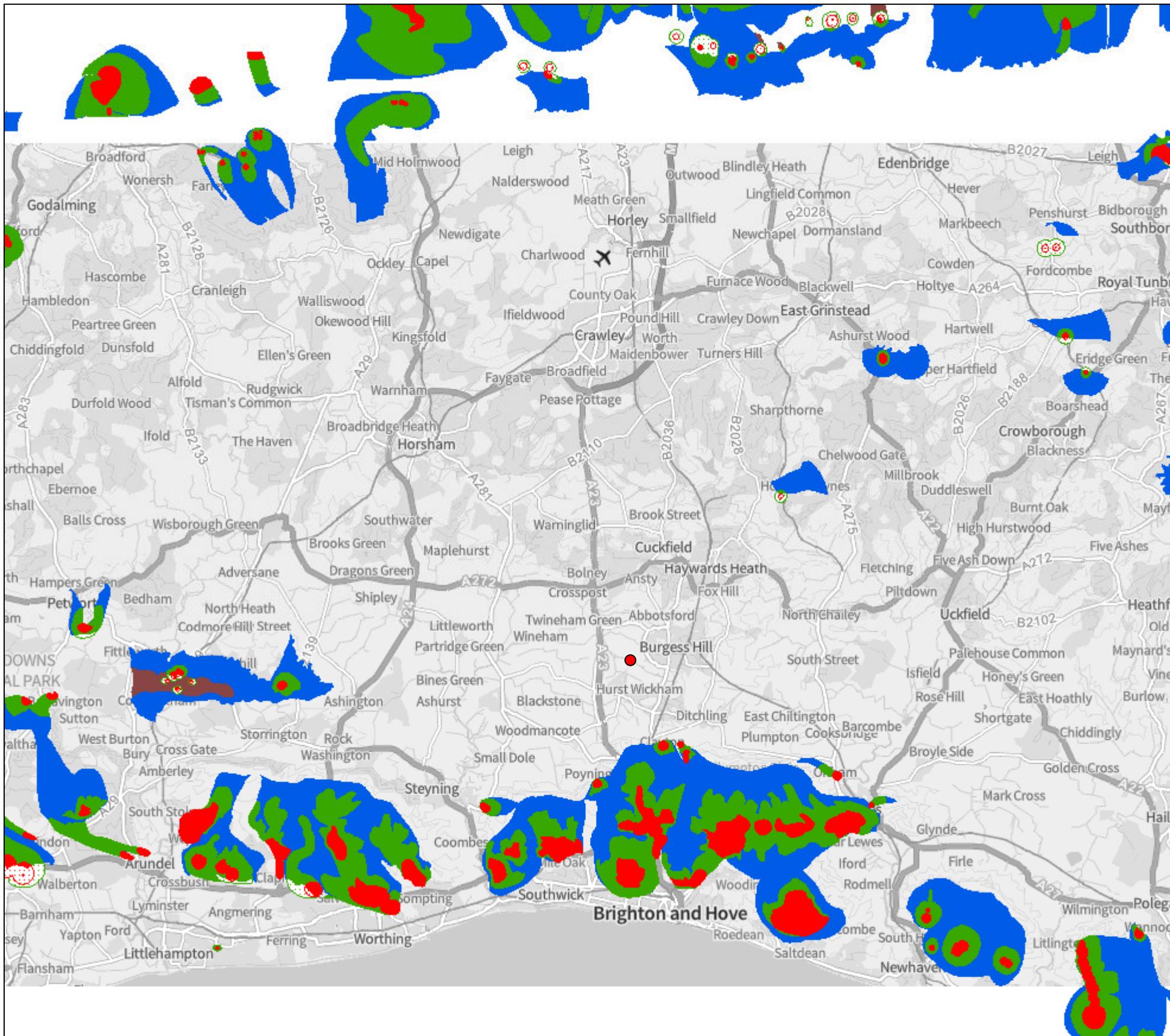
Map produced by MAGIC on 31 October, 2022.
 Copyright resides with the data suppliers and the map must not be reproduced without their permission. Some information in MAGIC is a snapshot of the information that is being maintained or continually updated by the originating organisation. Please refer to the metadata for details as information may be illustrative or representative rather than definitive at this stage.

Groundwater Vulnerability Map

Legend

Groundwater Vulnerability Map (England)

- Local Information
- Soluble Rock Risk
- High
- Medium - High
- Medium
- Medium - Low
- Low
- Unproductive

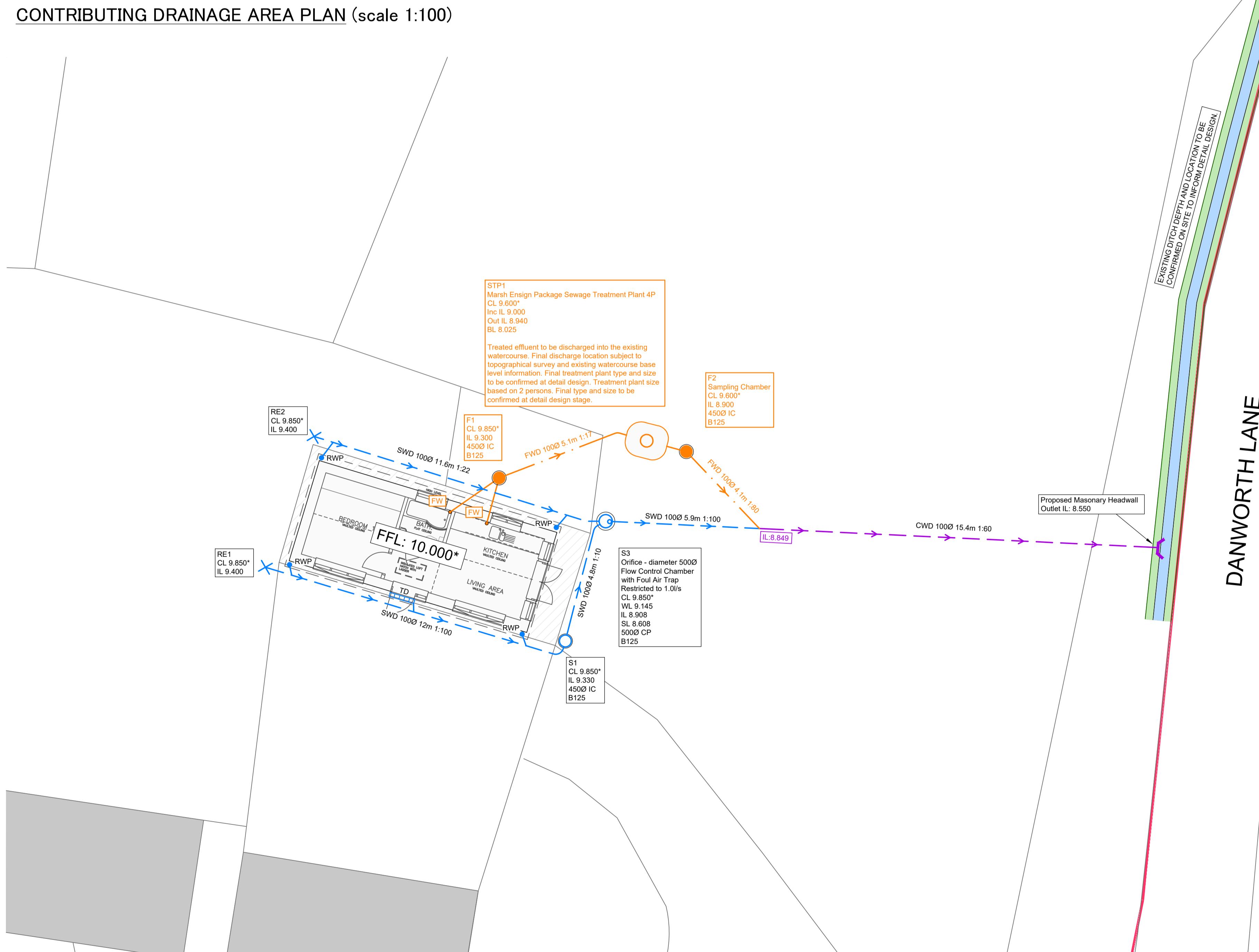
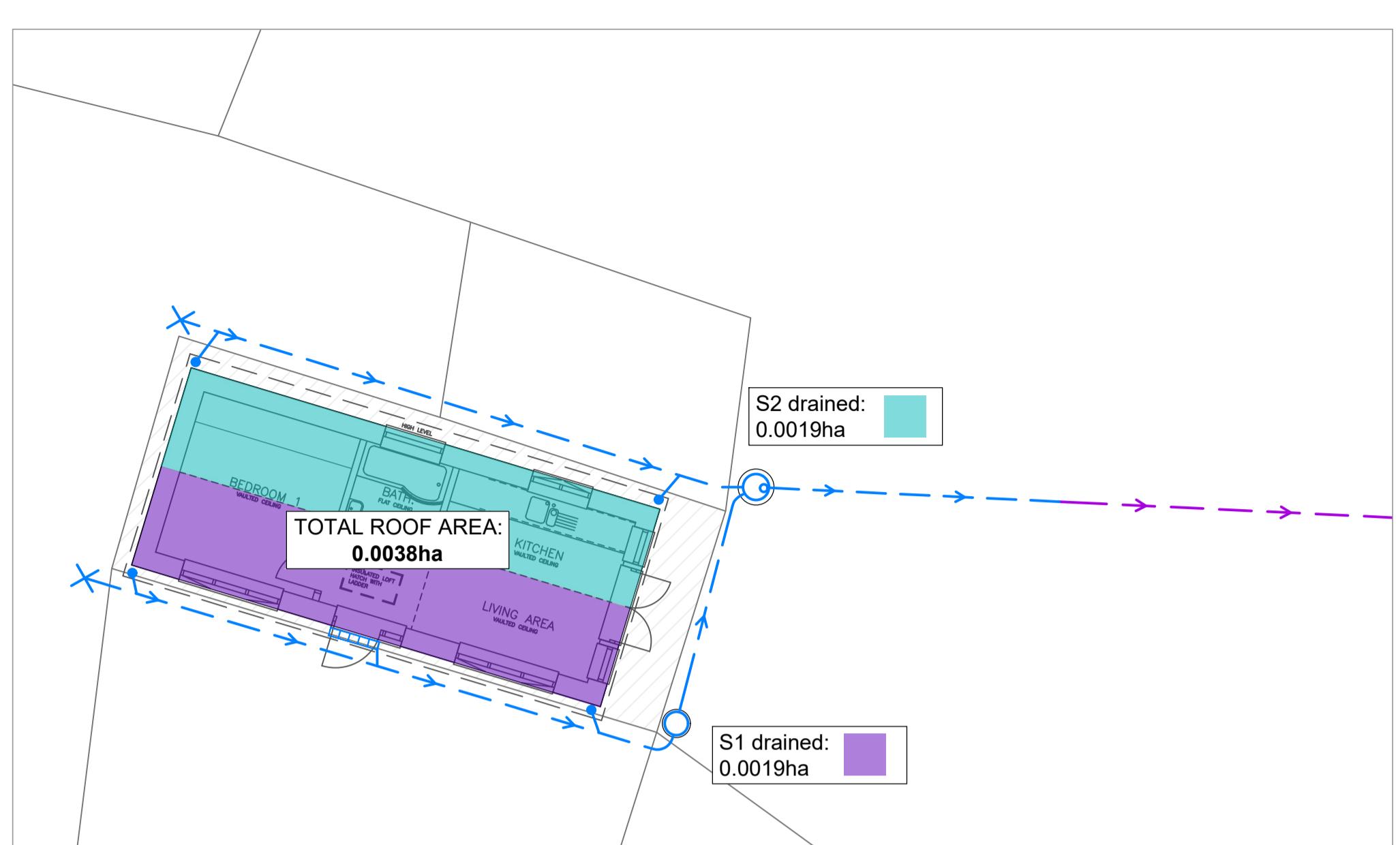

Projection = OSGB36

xmin = 523600
 ymin = 116900
 xmax = 534200
 ymax = 121700

0 0.5 1
 km

Map produced by MAGIC on 31 October, 2022.
 Copyright resides with the data suppliers and the map
 must not be reproduced without their permission. Some information
 in MAGIC is a snapshot of the information that is being maintained or
 continually updated by the originating organisation. Please
 refer to the metadata for details as information may be
 illustrative or representative rather than definitive at this stage.

Source Protection Zones

Legend

Source Protection Zones merged (England)

- Zone I - Inner Protection Zone
- Zone I - Subsurface Activity
- Zone II - Outer Protection Zone
- Zone II - Subsurface Activity
- Zone III - Total Catchment
- Zone III - Subsurface Activity
- Zone of Special Interest

7.4 Appendix D – Proposed Drainage Strategy and Hydraulic Calculations

DRAINAGE LEGEND (1:100)

PROPOSED FEATURES

- SWD — Proposed storm water sewer/drain
- TD — Proposed threshold drain channel
- Proposed rainwater pipe (assumed location- tbc by architect)
- Proposed storm water inspection chamber (4500)
- ✗ Proposed storm water rodding eye
- Proposed storm water orifice flow control chamber (5000)
- FWD — Proposed foul water sewer/drain
- FW Proposed soil stack (assumed location- tbc by architect)
- Proposed foul water inspection chamber (4500)
- CWD — Proposed Combined water (Treated effluent and surface water) discharge pipe

00.000*
1000 4.5m 1:100
Z BED

ABBREVIATIONS

MH - MANHOLE
IC - INSPECTION CHAMBER
AC - ACCESS CHAMBER
CP - CATCHPIT
BC - BRAKE CHAMBER
RE - RODDING EYE
IL - INVERT LEVEL
SL - SUMP LEVEL
CL - COVER LEVEL

Site Boundary
(as taken from 'Location Plan' Plan Ref no. TORQM21221141340686, dated: 09 August 2021)

Site Specific Notes

- The proposed surface water drainage has been designed based on desktop study. Infiltration method for SW discharge has been ruled out due to the site confirmed to be underlain by Clay soils with poor infiltration characteristics.
- It is proposed that surface water runoff is discharged into the existing ditch located adjacent to the site along the eastern boundary. Surface water runoff to be discharged at restricted rate of 1/l/s.
- Final discharge design is subject to external levels design and existing ditch depth and exact location.
- FW and RWP assumed and to be confirmed by the Architect at detail design stage.

STANDARD DRAINAGE NOTES

- DO NOT SCALE FROM THIS DRAWING, REFER TO FIGURED DIMENSIONS ONLY. THE CONTRACTOR SHOULD CHECK ALL DIMENSIONS ON SITE.
- ALL DIMENSIONS IN MILLIMETRES AND ALL LEVELS ARE IN METERS UNLESS NOTED OTHERWISE.
- THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT ARCHITECT AND ENGINEERING DETAILS, DRAWINGS AND SPECIFICATIONS.
- ANY DISCREPANCIES SHOULD BE REPORTED TO THE ARCHITECT AND/OR ENGINEER IMMEDIATELY, SO THAT CLARIFICATION CAN BE SOUGHT PRIOR TO THE COMMENCEMENT OF WORK.
- BEFORE COMMENCING CONSTRUCTION THE CONTRACTOR MUST CHECK THE INVERT LEVELS OF EXISTING SEWERS TO WHICH CONNECTIONS ARE MADE. IN ADDITION THE CONTRACTOR MUST LOCATE AND DETERMINE INVERT LEVELS OF THE EXISTING SPURS TO WHICH CONNECTIONS ARE PROPOSED. ANY DISCREPANCIES ARE TO BE NOTIFIED TO THE ENGINEER IMMEDIATELY, PRIOR TO CONSTRUCTION.
- ALL DRAINAGE WORKS SHOULD COMMENCE AT THE PROPOSED DOWNSTREAM CONNECTION POINT. WORKS CONTINUING UPSTREAM SHOULD NOT ALTER THE INVERT LEVELS TO THE ENGINEER'S CONNECTION TO MANHOLE OR LARGER SIZED PIPES ETC. SHOULD BE SOFT TO SOFFIT UNLESS OTHERWISE INSTRUCTED BY THE ENGINEER, IF THIS IS NOT POSSIBLE INFORM THE ENGINEER IMMEDIATELY.
- COVER LEVELS SHOWN ARE APPROXIMATE. COVERS AND FRAMES SHALL BE SET TO FINISHED GROUND LEVELS AND FALLS.
- ALL UN-REFERENCED PIPES ARE TO BE 100mm DIA
- ALL PIPES TO BE ADOPTED, OR CONNECTING TO ADOPTED SEWERS, TO BE VITRIFIED CLAY TO BS EN 295 AND BS65 (SWS ONLY), OR CONCRETE PIPES TO BE EN 1916 AND BS5911:PART 1.
- ROAD GULLY OUTLET PIPES ARE TO BE 150mm DIA, WITH CONCRETE SURROUND AND FLEXIBLE JOINTS. ALL GULLIES SHALL BE TINTED WITH GRADIENT GRATINGS AND FRAMES TO BS EN 294, UNLESS OTHERWISE STATED.
- ALL ADAPTABLE SEWERS SHALL BE CONSTRUCTED TO THE STANDARD AND SPECIFICATION LAID DOWN IN SEWERS FOR ADOPTION 6TH EDITION, WITH A VIEW TO ADOPTION UPON COMPLETION OF WORKS.
- ALL PRIVATE DRAINAGE TO BE IN ACCORDANCE WITH THE BUILDING REGULATIONS APPROVED DOCUMENT PART-H, AND TO THE SATISFACTION OF THE BUILDING CONTROL INSPECTOR.
- THE CONTRACTOR IS TO KEEP A RECORD OF ANY VARIATIONS MADE ON SITE, INCLUDING THE RELOCATION OF SEWERS OR DRAINS, SO THAT AS CONSTRUCTED DRAWING CAN BE PREPARED UPON COMPLETION OF THE PROJECT.
- STUB CONNECTIONS TO ADOPTABLE MANHOLES SHALL BE MADE FROM VITRIFIED CLAY AND CONSIST OF TWO ROCKER PIPES LAID AT THE SAME GRADIENT AS THE UP OR DOWNSTREAM PIPE.
- IF ANY SUB SOIL DRAINAGE SYSTEMS ARE UNCOVERED DURING THE WORKS CONTACT THE ENGINEER FOR INSTRUCTIONS. SUB SOIL DRAINS ARE TO BE DIVERTED AROUND NEW WORKS AND CONNECTED INTO THE SURFACE WATER.
- NO PRIVATE AREAS ARE TO DRAIN ONTO ADOPTABLE AREAS AND VICE VERSA.
- ALL EXISTING MANHOLE COVERS, GULLIES, ETC, ARE TO BE RAISED/LOWED TO SUIT NEW LEVELS.
- IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO CONFIRM THE LOCATION AND DEPTH OF ALL EXISTING SERVICES AND UTILITIES THAT MAY BE PRESENT.
- UPON COMPLETION BUT PRIOR TO HANDOVER, CONTRACTOR TO CARRY OUT FULL CCTV SURVEY OF DRAINAGE SYSTEM WHICH IS TO BE REVIEWED BY ENGINEER TO ENSURE SATISFACTORY INSTALLATION
- MANHOLE AND CHAMBER COVER GRADES:**

 - A15' IN ALL LANDSCAPED AREAS AND ON FOOTPATHS
 - B125' IN ALL DRIVEWAYS
 - C250' IN PRIVATE PARKING AREAS
 - D400' IN CARRIAGEWAY/ACCESS ROAD

PL	01.12.22	PRELIMINARY ISSUE	MR	TZ	CS
REV	DATE	DESCRIPTION	BY	CHK	APP

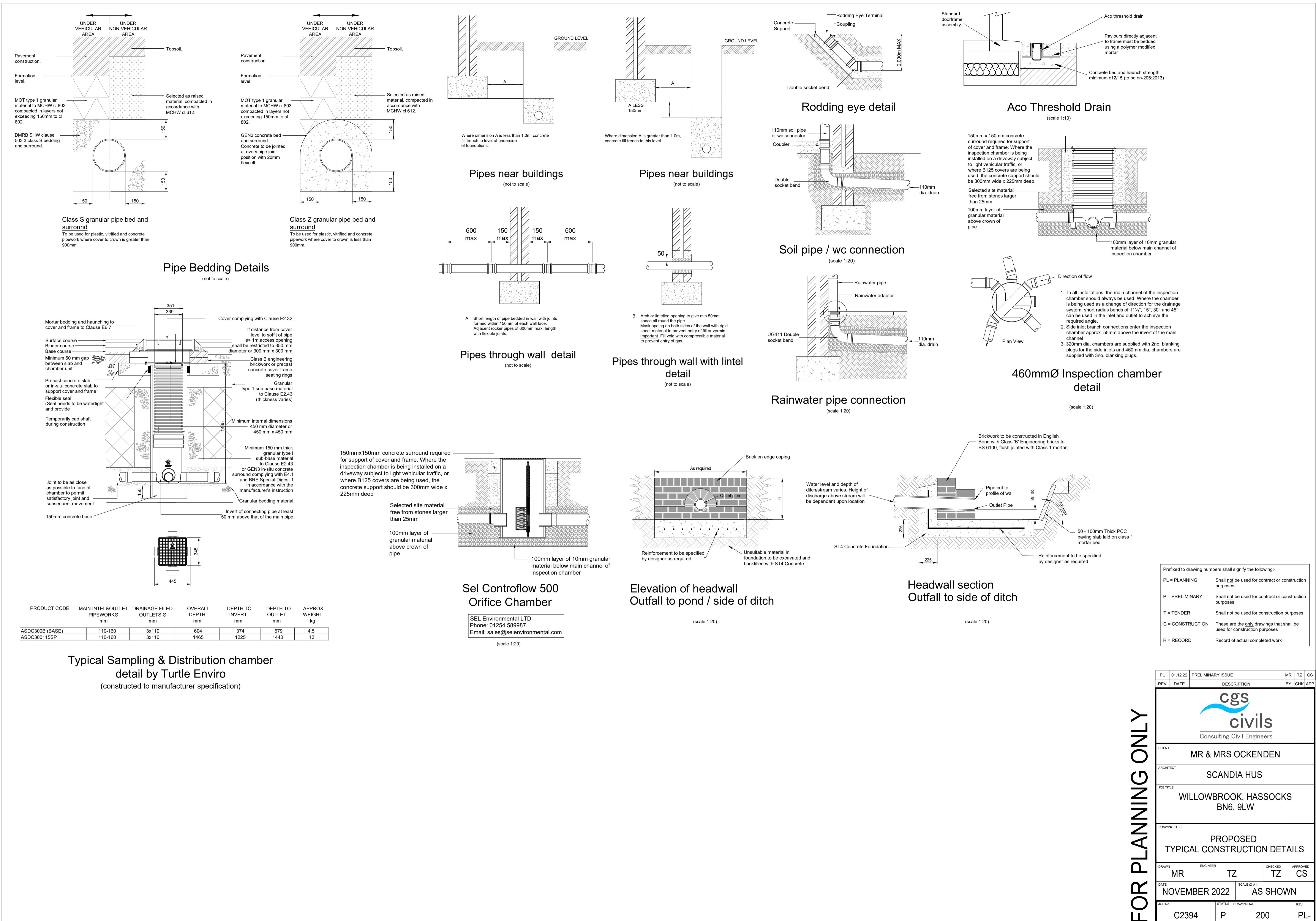
Prefixes to drawing numbers shall signify the following:-

PL = PLANNING Shall not be used for contract or construction purposes

P = PRELIMINARY Shall not be used for contract or construction purposes

T = TENDER Shall not be used for construction purposes

C = CONSTRUCTION These are the only drawings that shall be used for construction purposes


R = RECORD Record of actual completed work

PL	01.12.22	PRELIMINARY ISSUE	MR	TZ	CS
REV	DATE	DESCRIPTION	BY	CHK	APP
cgs civils					
Consulting Civil Engineers					
CLIENT MR & MRS OCKENDEN					
ARCHITECT SCANDIA HUS					
JOB TITLE WILLOWBROOK, HASOCKS BN6, 9LW					
DRAWING TITLE PROPOSED DRAINAGE STRATEGY & CONTRIBUTING AREA PLAN					
DRAWN	MR	ENGINEER	TZ	CHECKED	APPROVED
DATE	NOVEMBER 2022	SCALE @ A1	1:100		
JOB No.	C2394	STATUS	DRAWING No.	REV	
	P	100		PL-	

FOR PLANNING ONLY

DESIGN SUBJECT TO THE APPROVAL OF:
PLANNING AUTHORITY
BUILDING CONTROL

DESIGN SUBJECT TO THE CONFIRMATION OF:
EXTERNAL LEVELS DESIGN BY OTHERS
ORDINARY WATERCOURSE APPROVAL
LOCATION AND DEPTH OF EXISTING UTILITIES
ROOT PROTECTION AREAS

Design Settings

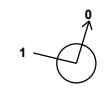
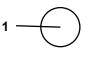
Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	2	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	20.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.300	Preferred Cover Depth (m)	1.200
CV	1.000	Include Intermediate Ground	✓
Time of Entry (mins)	4.00	Enforce best practice design rules	✓

Nodes

	Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
	RE1		4.00	9.850	150	6.182	6.644	0.450
	S1	0.002	4.00	9.850	450	17.684	3.867	0.568
	RE2		4.00	9.850	150	7.933	11.764	0.450
	S3	0.002	4.00	9.850	500	19.095	8.522	0.942
	Outfall			9.000	150	40.477	7.835	0.450

Links

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	RE1	S1	11.832	0.600	9.400	9.282	0.118	100.0	100	4.26	50.0
1.002	S3	Outfall	21.393	0.600	8.908	8.550	0.358	59.8	100	4.65	50.0
2.000	RE2	S3	11.623	0.600	9.400	8.908	0.492	23.6	100	4.12	50.0
1.001	S1	S3	4.864	0.600	9.282	8.908	0.374	13.0	100	4.29	50.0



Name	Vel (m/s)	Cap (l/s)	Flow (l/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (l/s)	Pro Depth (mm)	Pro Velocity (m/s)
1.000	0.769	6.0	0.0	0.350	0.468	0.000	0.0	0	0.000
1.002	0.998	7.8	0.7	0.842	0.350	0.004	0.0	21	0.623
2.000	1.595	12.5	0.0	0.350	0.842	0.000	0.0	0	0.000
1.001	2.154	16.9	0.4	0.468	0.842	0.002	0.0	11	0.877

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.000	11.832	100.0	100	Circular	9.850	9.400	0.350	9.850	9.282	0.468
1.002	21.393	59.8	100	Circular	9.850	8.908	0.842	9.000	8.550	0.350
2.000	11.623	23.6	100	Circular	9.850	9.400	0.350	9.850	8.908	0.842
1.001	4.864	13.0	100	Circular	9.850	9.282	0.468	9.850	8.908	0.842

Link	US Node	Dia (mm)	Node Type	MH Type	DS Node	Dia (mm)	Node Type	MH Type
1.000	RE1	150	Manhole	Adoptable	S1	450	Manhole	Adoptable
1.002	S3	500	Manhole	Adoptable	Outfall	150	Manhole	Adoptable
2.000	RE2	150	Manhole	Adoptable	S3	500	Manhole	Adoptable
1.001	S1	450	Manhole	Adoptable	S3	500	Manhole	Adoptable

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
RE1	6.182	6.644	9.850	0.450	150		1.000	9.400	100
S1	17.684	3.867	9.850	0.568	450		1.000	9.282	100
RE2	7.933	11.764	9.850	0.450	150		2.000	9.400	100
S3	19.095	8.522	9.850	0.942	500		2.000	8.908	100
Outfall	40.477	7.835	9.000	0.450	150		1.002	8.908	100
							1.002	8.550	100

Simulation Settings

Rainfall Methodology	FSR	Analysis Speed	Normal
FSR Region	England and Wales	Skip Steady State	x
M5-60 (mm)	20.000	Drain Down Time (mins)	240
Ratio-R	0.300	Additional Storage (m³/ha)	20.0
Summer CV	1.000	Check Discharge Rate(s)	x
Winter CV	1.000	Check Discharge Volume	x

Storm Durations

15	30	60	120	180	240	360	480	600	720	960	1440
----	----	----	-----	-----	-----	-----	-----	-----	-----	-----	------

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
1	0	0	0
10	0	0	0
30	0	0	0
100	40	0	0

Node S3 Online Orifice Control

Flap Valve	x	Design Depth (m)	0.600	Discharge Coefficient	0.600
Replaces Downstream Link	✓	Design Flow (l/s)	1.0		
Invert Level (m)	8.900	Diameter (m)	0.025		

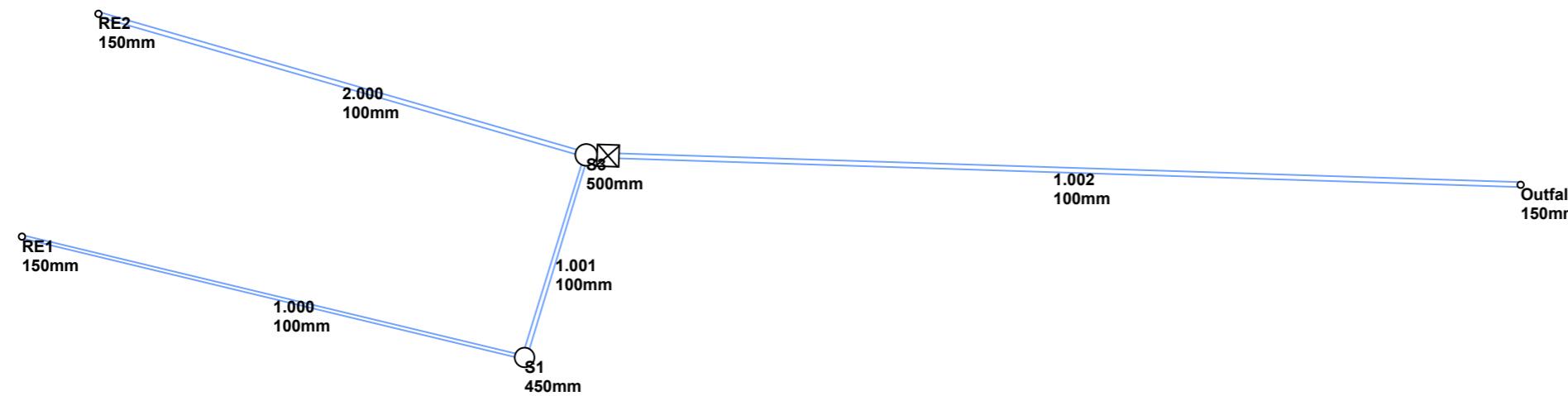
Results for 1 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	RE1	1	9.400	0.000	0.0	0.0000	0.0000	OK
15 minute summer	S1	10	9.293	0.011	0.4	0.0025	0.0000	OK
15 minute summer	RE2		1	9.400	0.000	0.0	0.0000	OK
15 minute summer	S3		12	8.987	0.079	0.8	0.0191	0.0000
15 minute summer	Outfall		1	8.550	0.000	0.4	0.0000	OK
Link Event (Upstream Depth)	US Node	Link Node	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	RE1	1.000	S1		0.0	0.000	0.000	0.0026
15 minute summer	S1	1.001	S3		0.4	0.533	0.024	0.0169
15 minute summer	RE2	2.000	S3		0.0	0.000	0.000	0.0387
15 minute summer	S3	Orifice	Outfall		0.4			0.3

Results for 10 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	RE1	1	9.400	0.000	0.0	0.0000	0.0000	OK
15 minute summer	S1	10	9.296	0.014	0.7	0.0032	0.0000	OK
15 minute summer	RE2		1	9.400	0.000	0.0	0.0000	0.0000
30 minute summer	S3		21	9.112	0.204	1.2	0.0488	0.0000
15 minute summer	Outfall		1	8.550	0.000	0.5	0.0000	0.0000
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	RE1	1.000	S1	0.0	0.000	0.000	0.0039	
15 minute summer	S1	1.001	S3	0.7	0.533	0.041	0.0206	
15 minute summer	RE2	2.000	S3	0.0	0.000	0.000	0.0455	
30 minute summer	S3	Orifice	Outfall	0.6				0.8

Results for 30 year Critical Storm Duration. Lowest mass balance: 100.00%


Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	RE1	1	9.400	0.000	0.0	0.0000	0.0000	OK
15 minute summer	S1	10	9.298	0.016	0.9	0.0036	0.0000	OK
15 minute summer	RE2		1	9.400	0.000	0.0	0.0000	0.0000
30 minute summer	S3		21	9.172	0.264	1.6	0.0632	0.0000
15 minute summer	Outfall		1	8.550	0.000	0.6	0.0000	0.0000
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	RE1	1.000	S1	0.0	0.000	0.000	0.0047	
15 minute summer	S1	1.001	S3	0.9	0.533	0.053	0.0209	
15 minute summer	RE2	2.000	S3	0.0	0.000	0.000	0.0455	
30 minute summer	S3	Orifice	Outfall	0.7				0.9

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	RE1	1	9.400	0.000	0.0	0.0000	0.0000	OK
30 minute summer	S1	22	9.394	0.112	1.5	0.0255	0.0000	SURCHARGED
15 minute summer	RE2	1	9.400	0.000	0.0	0.0000	0.0000	OK
30 minute summer	S3	22	9.394	0.486	3.0	0.1162	0.0000	SURCHARGED
15 minute summer	Outfall	1	8.550	0.000	0.9	0.0000	0.0000	OK
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	RE1	1.000	S1	0.0	0.000	0.000	0.0362	
30 minute summer	S1	1.001	S3	1.5	0.533	0.088	0.0381	
15 minute summer	RE2	2.000	S3	0.0	0.000	0.000	0.0455	
30 minute summer	S3	Orifice	Outfall	0.9				1.7

Node Name	RE1	S1	S3	Outfall
A3 drawing				
Hor Scale 200				
Ver Scale 100				
Datum (m) -1.000				
Link Name	1.000	1.001	1.002	
Section Type	100mm	100mm	100mm	
Slope (1:X)	100.0	13.0	59.8	
Cover Level (m)	9.850	9.850	9.850	9.000
Invert Level (m)	9.400	9.282	8.908	8.550
Length (m)	11.832	4.864	21.393	

Node Name	RE2	S3
A3 drawing		
Hor Scale 200		
Ver Scale 100		
Datum (m) -1.000		
Link Name	2.000	
Section Type	100mm	
Slope (1:X)	23.6	
Cover Level (m)	9.850	9.850
Invert Level (m)	9.400	8.908
Length (m)	11.623	

